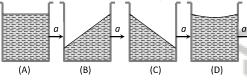

GPLUS EDUCATION

Date Tim Mar	e :			PHYSICS
Mai	RS .	LAWS	S OF MOTION	
		Single C	orrect Answer Type	
1.	An ice cart of mass	60 kg rests on a horizonta	l snow patch with coeffici	tient of static friction $\frac{1}{3}$. Assuming
	that there is no ver move the ice cart (rtical acceleration, find the $g = 9.8 \text{ ms}^{-2}$)	magnitude of the maximu	um horizontal force required to
	suspended from it		exceeds 25 kg . What is the	d) 196 N reak when a mass of 25 kg is e maximum acceleration with which
	a) $10 m/s^2$	b) $25 m/s^2$	c) $2.5 m/s^2$	d) $5 m/s^2$
	A player kicks a focontact between the	• •	e football begins to move	with a velocity of 10 m/s. If the
	$\frac{1}{50}$ s, then the force on t	he ball should be	~	
	a) 2500 N	b) 1250 N	c) 250 N	d) 625 N
4.				eration of $2.8 \mathrm{ms}^{-2}$. The mass of the
		The upward force on the op		
_	a) 595 N	b) 675 N	c) 456 N	d) 925 N
5.	horizontal string w			figure. The block is tied by an between the surfaces of contact is
	$(g = 10 \text{ ms}^{-2})$			
	45°			
	a) 1/2	b) 3/4	c) 2/3	d) 1/4
6.		,		0.1kgs ⁻¹ . If the speed of the gas
0.		_	-	ne acceleration of the rocket (in
	ms^{-2}) is		3,	
	a) 5	b) 5.2	c) 2.5	d) 25
7.	A 100 kg block is s	uspended with the help of	three string A , B and C . T	he tension in the string \emph{C} is
	90° B C 100 kg			
	a) 50 gN	b) 100 gN	c) 20 gN	d) 20 gN
8.				is zero, then form an inertial frame
	one can surely say	that		


- a) Linear momentum of the system does not change in time
- b) Kinetic energy of the system does not change in time
- c) Angular momentum of the system does not change in time
- d) Potential energy of the system does not change in time
- 9. Which of the following quantities measured from different inertial reference frames are same
 - a) Force
- b) Velocity
- c) Displacement
- d) Kinetic energy

- 10. Maximum value of static friction is called
 - a) Limiting friction
- b) Rolling friction
- c) Normal reaction
- d) Coefficient of friction
- 11. Two bodies of mass 4 kg and 6 kg are attached to the ends of a string passing over a pulley. The 4 kg mass is attached to the table by another string. The tension in this string T_1 is

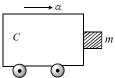
- a) 19.6 N
- b) 25 N

- c) 10.6 N
- d) 10 N
- 12. A vessel containing water is given a constant acceleration a towards the right, along a straight horizontal path. Which of the following diagram represents the surface of the liquid

a) A

b) B

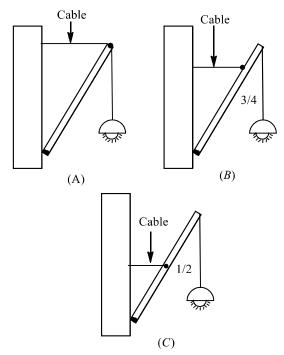
c) C


- d) D
- 13. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10s. Then the coefficient of friction is
 - a) 0.01

0.02

c) 0.03

d) 0.06


- 14. Which of the following is the correct order of forces
 - a) Weak < gravitational forces < strong forces (nuclear) < electrostatic
 - b) Gravitational < Weak < (electrostatic) < strong force
 - c) Gravitational < electrostatic < Weak < strong force
 - d) Weak < gravitational < electrostatic < strong forces
- 15. A block of mass *m* is in contact with the cart *C* as shown in the figure

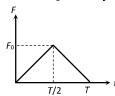
The coefficient of static friction between the block and the cart is μ . The acceleration α of the cart that will prevent the block from falling satisfies

- a) $\alpha < \frac{g}{u}$
- b) $\alpha > \frac{mg}{\mu}$
- c) $\alpha > \frac{g}{\mu m}$
- d) $\alpha \ge \frac{g}{\mu}$
- 16. A block of mass m_1 reacts on a horizontal table. A string tied to the block is passed on a frictionless pulley fixed at the end of the table and to the other end of string is hung another block of mass m_2 . The acceleration of the system is
 - $a) \frac{m_2 g}{(m_1 + m_2)}$
- $b) \frac{m_1 g}{(m_1 + m_2)}$
- c) g

- $\frac{m_2g}{m_1}$
- 17. If a street light of mass M is suspended from the end of a uniform rod of length L in different possible patterns as shown in figure, then

a) Pattern A is more sturdy

b) Pattern B is more sturdy


c) Pattern C is more sturdy

- d) All will have same sturdiness
- 18. If a ladder weighing 250 N is placed against a smooth vertical wall having coefficient of friction between it and floor is 0.3, then what is the maximum force of friction available at the point of contact between the ladder and the floor
 - a) 75 N

b) 50 N

c) 35 N

- d) 25 N
- 19. A particle of mass m moving with velocity u makes an elastic one dimensional collision with a stationary particle of mass m. They are in contact for a very short time T. Their force of interaction increases from zero to F_0 linearly in time T/2, and decreases linearly to zero in further time T/2. The magnitude of F_0 is

- a) mu/T
- b) 2mu/T
- c) mu/2T
- d) None of these
- 20. Pulling force making an angle θ to the horizontal is applied on a block of weight W placed on a horizontal table. If the angle of friction is α , then the magnitude of force required to move the body is equal to
 - $W \sin \alpha$ a) $\frac{1}{g \tan(\theta - \alpha)}$
- b) $\frac{W\cos\alpha}{\cos(\theta-\alpha)}$
- c) $\frac{W \sin \alpha}{\cos(\theta \alpha)}$
- 21. Two blocks of masses $m_1 = 4$ kg and $m_2 = 2$ kg are connected to the ends of a string which passes over a massless, frictionless pulley. The total downwards thrust on the pulley is nearly
 - a) 27 N

b) 54 N

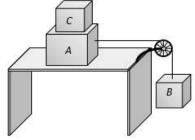
c) 0.8 N

- d) Zero
- 22. Consider the following statement. When jumping from some height, you should bend your knees as you come to rest instead of keeping your legs stiff. Which of the following relations can be useful in explaining the statement?
 - a) $\Delta \mathbf{p}_1 = -\Delta \mathbf{p}_2$

b) $\Delta E = -\Delta(PE + KE) = 0$

c) $\mathbf{F} \Delta t = m \Delta \mathbf{v}$

- d) $\frac{\Delta x \propto \Delta F}{\text{Where symbols have their usual meaning}}$
- 23. At a certain instant of time the mass of rocket going up vertically is 100 kg. If it is ejecting 5 kg of gas per second at a speed of 400 m/s, the acceleration of the rocket would be (Taking $g = 10 \text{ m/s}^2$)


aì	-20	m/s^2

b)
$$10 \text{ m/s}^2$$

c)
$$2 \text{ m/s}^2$$

d)
$$1 \text{ m/s}^2$$

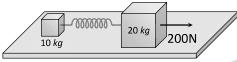
24. Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown. The coefficient of static friction of A with table is 0.2. The minimum mass of C that may be placed on A to prevent it from moving is

a) 15 kg

b) 10 kg

c) 5 kg

25. A bullet of mass 5 g is shot from a gun of mass 5 kg. The muzzle velocity of the bullet is 5000 ms^{-1} . The recoil velocity of the gun is


a) $0.5 \, \text{ms}^{-1}$

b) 0.25 ms^{-1}

c) 1 ms^{-1}

d) Data is insufficient

26. The masses of 10 kg and 20 kg respectively are connected by a massless spring as shown in figure. A force of 200 N acts on the 20 kg mass. At the instant shown, the 10 kg mass has acceleration $12 m/\text{sec}^2$. What is the acceleration of 20 kg mass

a) $12 m/sec^2$

b) 4 m/sec²

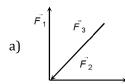
c) $10 \, m/{\rm sec^2}$

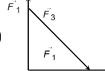
27. A steel wire can withstand a load up to 2940 N. A load of 150 kg is suspended from a rigid support. The maximum angle through which the wire can be displaced from the mean position, so that the wire does not break when the load passes through the position of equilibrium, is

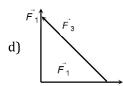
b) 60°

d) 85°

28. The upper half of an inclined plane of inclination θ is perfectly smooth while the lower half is rough. A body starting from the rest at top comes back to rest at the bottom if the coefficient of friction for the lower half is given by


a) $\mu = \sin \theta$


b) $\mu = \cot \theta$


c) $\mu = 2 \cos \theta$

d) $\mu = 2 \tan \theta$

29. Which of the four arrangements in the figure correctly shows the vector addition of two forces $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ to yield the third force $\overrightarrow{F_3}$

30. A particle moves in the x - y plane under the influence of a force such that its linear momentum is $\vec{p}(t) = A[\hat{\imath}\cos(kt) - \hat{\jmath}\sin(kt)]$

Where A and k are constants. The angle between the force and momentum is

b) 30°

c) 45°

d) 90°

31. The spring balance inside a lift suspends an object. As the lift begins to ascent, the reading indicated by the spring balance will

a) Increase

b) Decrease

c) Remain unchanged

d) Depend on the speed of ascend

32. Two blocks of equal masses m are released from the top of a smooth fixed wedge as shown in the figure.

B 30° C C

The acceleration of the centre of mass of the two blocks is $B = \sqrt{30^{\circ}}$

b) $\frac{g}{2}$

c) $\frac{3g}{4}$

 $\frac{g}{\sqrt{2}}$

33. A brick of mass 2 kg begins to slide down on a plane inclined at an angle of 45° with the horizontal. The force of friction will be

a) 19.6 sin 45°

b) 19.6 cos 45°

c) 9.8 sin 45°

d) 9.8 cos 45°

34. System shown in figure is in equilibrium and at rest. The spring and string are massless, now the string is

cut. The acceleration of mass 2 m and m just after the string is cut will be

a) g/2 upward, g downward

b) g upward, g/2 downward

c) g upward, 2g downward

d) 2g upward, g downward

35. A gramophone record is revolving with an angular velocity ω . A coin is placed at a distance r from the centre of the record. The static coefficient of friction is μ . The coin will revolve with the record if

a)
$$r \ge \frac{\mu g}{\omega^2}$$

b) $r = \mu g \omega^2$

c) $r < \frac{\omega^2}{\mu g}$

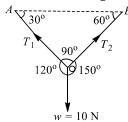
d) $r \le \frac{\mu g}{\omega^2}$

- 36. A body sitting on the topmost berth in the compartment of a train which is just going to stop on a railway station, drops an apple aiming at the open hand of his brother sitting vertically below his hands at a distance of about 2 *m*. The apple will fall
 - a) Precisely on the hand of his brother
 - b) Slightly away from the hand of his brother in the direction of motion of the train
 - c) Slightly away from the hand of his brother in the direction opposite to the direction of motion of the train
 - d) None of the above
- 37. Two masses $m_1 = 1$ kg and $m_2 = 2$ kg are connected by a light inextensible string and suspended by means of a weightless pulley as shown in figure.

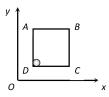
Assuming that both the masses start from rest, the distance travelled by the centre of mass in 2 s is (take $g = 10 \text{m/s}^2$)

a) $\frac{20}{9}$ m

b) $\frac{40}{9}$ m


c) $\frac{2}{3}$ m

d) $\frac{1}{3}$ m


- 38. For ordinary terrestrial experiments, the observer is an inertial frame in the following cases is
 - a) A child revolving in a giant wheel
 - b) A driver in a sports car moving with a constant high speed of 200 kmh^{-1} on a straight rod
 - c) The pilot of an aeroplane which is taking off
 - d) A cyclist negotiating a sharp curve
- 39. A large force is acting on a body for a short time. The impulse imparted is equal to the change in

- a) Acceleration
- b) Momentum
- c) Energy
- d) Velocity
- 40. A block is kept on an inclined plane of inclination θ of length l. The velocity of particle at the bottom of inclined plane is (the coefficient of friction is μ)

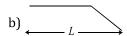
 - a) $\sqrt{2gl(\mu\cos\theta \sin\theta)}$ b) $\sqrt{2gl(\sin\theta \mu\cos\theta)}$ c) $\sqrt{2gl(\sin\theta + \mu\cos\theta)}$ d) $\sqrt{2gl(\cos\theta + \mu\sin\theta)}$
- 41. A ball of mass 1 kg hangs in equilibrium from two strings *OA* and *OB* as shown in figure. What are the tensions in strings *OA* and *OB*? (Take $g = 10 \text{ ms}^{-2}$)

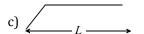
- a) 5 N, zero
- b) Zero, N
- c) 5 N, $5\sqrt{3}$ N
- d) $5\sqrt{3}$ N, 5 N
- 42. A solid sphere of mass 2 kg is resting inside a cube as shown in the figure. The cube is moving with a velocity $v = (5t\hat{i} + 2t\hat{j})m/s$. Here t is the time in second. All surface are smooth. The sphere is at rest with respect to the cube. What is the total force exerted by the sphere on the cube. (Take $g = 10 m/s^2$)

- a) $\sqrt{29}N$
- b) 29 N

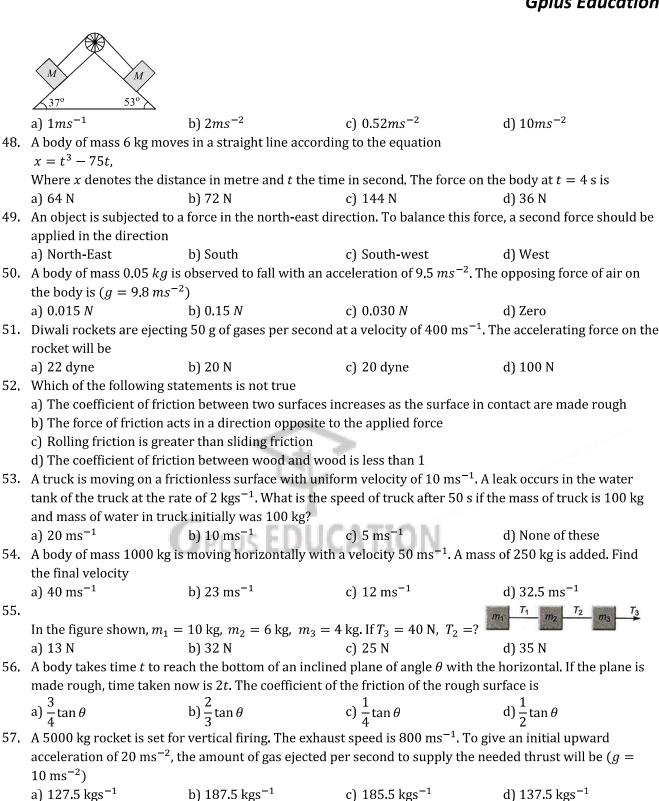
c) 26 N

- d) $\sqrt{89} N$
- 43. In the given arrangement, *n* number of equal masses are connected by strings of negligible masses. The tension in the string connected to nth mass is
 - a) $\frac{mMg}{nm+M}$
- c) mg


- d) mng
- 44. A block of mass m is placed on a smooth wedge of inclination θ . The whole system is accelerated horizontally so that the block does not slip on the wedge. The force exerted by the wedge on the block (gis acceleration due to gravity) will be
 - a) $mg \cos \theta$
- b) $mg \sin \theta$
- c) mg


- d) $mg/\cos\theta$
- 45. A body is imparted motion from rest to move in a straight line. If it is then obstructed by an opposite force,
 - a) The body may necessarily change direction
 - b) The body is sure to slow down
 - c) The body will necessarily continue to move in the same direction at the same speed
 - d) None of these
- 46. A person used force (*F*), shown in figure to move a load with constant velocity on given surface

Identify the correct surface profile



47. The acceleration of system of two bodies over the wedge as shown in figure is

58. A block of mass *M* is pulled along a horizontal frictionless surface by a rope of mass *m*. Force *P* is applied at one end of the rope. The force which the rope exerts on the block is

b) $\frac{P}{M-m}$

c) $\frac{Pm}{M-m}$

d) $\frac{PM}{m+M}$

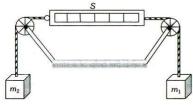
59. A body of mass M is kept on a rough horizontal surface (friction coefficient μ). A person is trying to pull the body by applying a horizontal force but the body is not moving. The force by the surface on the body is F, where

a) F = Mg

b) $F = \mu M g f$

c)
$$Mg \le F \le Mg\sqrt{1 + \mu^2}$$

d)
$$Mg \ge F \ge Mg\sqrt{1 + \mu^2}$$


- 60. Three concurrent co-planar forces 1 *N*, 2 *N* and 3 *N* acting along different directions on a body
 - a) Can keep the body in equilibrium if 2 N and 3 N act at right angle
 - b) Can keep the body in equilibrium if 1 N and 2 N act at right angle
 - c) Cannot keep the body in equilibrium
 - d) Can keep the body in equilibrium if 1 N and 3 N act at an acute angle
- 61. A car turns a corner on a slippery road at a constant speed of $10 \, m/s$. If the coefficient of friction is 0.5, the minimum radius of the arc in meter in which the car turns is

b) 10

c) 5

d) 4

62. In the arrangement shown, the pulleys are fixed and ideal, the strings are light, $m_1 > m_2$ and S is a spring balance which is itself massless. The reading of S (in unit of mass) is

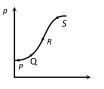
a)
$$m_1 - m_2$$

b)
$$\frac{1}{2}(m_1 + m_2)$$

c)
$$\frac{m_1 m_2}{m_1 + m_2}$$

d)
$$\frac{2m_1m_2}{m_1+m_2}$$

- 63. Which activity is not based upon friction
 - a) Writing
- b) Speaking
- c) Hearing
- d) Walking
- 64. A rope of mass 0.1 kg is connected at the same height of two opposite walls. It is allowed to hang under its own weight. At the contact point between the rope and the wall, the rope makes an angle $\theta=10^\circ$ with respect to the horizontal. The tension in the rope at its midpoint between the wall is
 - a) 2.78 N
- b) 2.56 N
- c) 2.82 N
- d) 2.71 N
- 65. Two masses *M* and *m* are connected by a weightless string. They are pulled by a force *F* on a frictionless horizontal surface. The tension in the string will be



b) $\frac{F}{M+m}$

c)
$$\frac{FM}{m}$$

d)
$$\frac{Fm}{M+m}$$

66. The variation of momentum with time of one of the body in a two body collision is shown in fig. The instantaneous force is maximum corresponding to point

a) *P*

b) Q

c) R

- d) S
- 67. A motorcyclist of mass m is to negotiate a curve of radius r with a speed v. The minimum value of the coefficient of friction so that this negotiation may take place safely, is
 - a) v^2rg

b) $\frac{v^2}{ar}$

c) $\frac{gr}{v^2}$

- d) $\frac{g}{v^2r}$
- 68. If a body of mass m is carried by a lift moving with an upward acceleration a, then the forces acting on the body are (i) the reaction R on the floor of the lift upwards (ii) the weight mg of the body acting vertically downwards. The equation of motion will be given by
 - a) R = mg ma
- b) R = mg + ma
- c) R = ma mg
- d) $R = mg \times ma$
- 69. A packet of weight *w* is dropped with the help of a parachute and on striking the ground comes to rest with retardation equal to twice the acceleration due to gravity. What is the force exerted on the ground?
 - a) w

b) 2 и

c) 3 w

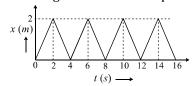
d) 4 w

70.			udes is 18 <i>N</i> and their resu Then the magnitudes of th	ltant is perpendicular to the e forces are		
	a) 12 <i>N</i> ,6 <i>N</i>	b) 13 <i>N</i> , 5 <i>N</i>	c) 10 N, 8 N	d) 16 <i>N</i> , 2 <i>N</i>		
71.		N is necessary to just holock and the wall is 0.2. The	d a block stationary agains e weight of the block is	et a wall. The coefficient of		
	10 N					
	a) 2 <i>N</i>	b) 20 <i>N</i>	c) 50 <i>N</i>	d) 100 <i>N</i>		
72.	A car is moving with un	iform velocity on a rough	horizontal road. Therefore	e, according to Newton's first		
	law of motion					
	a) No force is being app	olied by its engine				
	b) A force is surely bein	g applied by its engine				
	c) An acceleration is be	ing produced in the car				
	d) The kinetic energy of	f the car is increasing				
73.	A 2 kg block is lying on	a smooth table which is c	onnected by a body of mas	s 1 kg by a string which passes		
	through a pulley. The 1 will be	kg mass is hanging vertic	ally. The acceleration of bl	ock and tension in the string		
	a) $3.27m/s^2$, $6.54 N$	b) 4.38 <i>m/s</i> ² , 6.54 <i>N</i>	c) 3.27m/s ² , 9.86 N	d) 4.38 <i>m/s</i> ² , 9.86 <i>N</i>		
74.	A machine gun mounte	d on a 2000 kg car on a ho	rizontal frictionless surfac	e fires 10 bullets per second. If		
	will be		P	en the acceleration of the car		
			70	d) $\frac{1}{60}$ ms ⁻²		
75.	A rocket of mass $100 \text{ kg burns } 0.1 \text{ kg of fuel per second.}$ If velocity of exhaust gas is 1 kms^{-1} , then it lifts with an acceleration of					
	a) 1000 ms^{-2}	b) 100 ms^{-2}	c) 10 ms ⁻²	d) 1 ms ⁻²		
76.	A boy of mass $0.25 kg$ is	s projected with muzzle v	elocity $100\ ms^{-1}$ from a ta	nk of mass $100 kg$. What is the		
	recoil velocity of the tank					
	a) $5 ms^{-1}$	b) $25 ms^{-1}$	c) $0.5 \ ms^{-1}$	d) $0.25 ms^{-1}$		
77.	A force vector applied of will be the mass of the h		$s \vec{F} = 6\hat{\imath} - 8\hat{\jmath} + 10\hat{k} \text{ and ac}$	ccelerates with $1 m/s^2$. What		
	a) $10\sqrt{2} kg$	b) $2\sqrt{10} kg$	c) 10 <i>kg</i>	d) 20 <i>kg</i>		
78.		<u> </u>		rope at distance <i>x</i> from the end		
, 0.	when the force is applied			rope at aistance with our one ona		
			$\mathcal{F}L$	Fx		
	a) $\frac{F(L-x)}{L}$	b) $\frac{FL}{L-x}$	c) $\frac{FL}{x}$	d) $\frac{Fx}{L-x}$		
79.	A person is sitting in a l	eft accelerating upwards.	Measured weight of perso	n will be		
	a) Less than actual weight b) Equal to actual weight					

80. A block of mass m is pushed with a velocity u towards a movable wedge of mass nm and height h, figure. All the surfaces are smooth. The minimum value of u for which the block will reach the top of wedge is

d) None of the above

a)
$$\sqrt{2gh\left(1-\frac{1}{n}\right)}$$
 b) $\sqrt{2gh\left(1+\frac{1}{n}\right)}$ c) $\sqrt{3gh}$ d) $\sqrt{2g}$


81. A block of mass 10 kg is placed on an inclined plane. When the angle of inclination is 30° , the block just begin to slide down the plane. The force of static friction is

c) More than actual weight

n

				Gplus Education
				Opius Luucution
82.		=	c) $49 kg$ wt of static friction between them to be in equilibrium. The	d) 5 kg wt e block and the table is 0.25. value of T_1 is
	$ \begin{array}{c cccc} T_2 & & \\ \hline & T_1 & T_1 & \\ \hline & & & \\ \hline $			
	a) 0.25 N	b) 25 N	c) 100 N	d) 100.25 N
83.			9.8 m/s^2 . The acceleration	of the block is $10 m/s^2$.
	What is the coefficient of			
	a) 0.03	b) 0.01	c) 0.30	d) 0.25
84.		=		ction. Tension developed in
		ected to the lift is $(g = 9.8)$		D 44 000 N
0=	a) 9,800 <i>N</i>	b) 10,000 <i>N</i>	c) 10,800 <i>N</i>	d) 11,000 <i>N</i>
85.	-		h angle of inclination α. The	e incline is given an
	acceleration a to keep th	e block stationary. Then a i	s equal to	
	a) $g/\tan\alpha$	b) g cosec α	c) <i>g</i>	d) $g \tan \alpha$
86.	= =		0 cm. the coin is on the ver	= =
			tatic friction between the b	
	a) 1.0	b) 0.4	c) 0.3	d) 0.2
87.			ficient of friction is μ , then t	
	the part of this rope which	ch can overhang from the e	dge of the table without slic	_
	a) $\frac{1}{u}$	b) $\frac{1}{u+1}$	c) $\frac{\mu}{1 + \mu}$	d) $\frac{\mu l}{\mu - 1}$
88.	A boy of mass $100 a$ is sli	iding from an inclined plan	e of inclination 30°. What is	•
	experienced if $\mu = 1.7$			
	-	b) $1.7 \times \sqrt{3} \times \frac{1}{2}N$	c) $1.7 \times \sqrt{3}N$	d) $1.7 \times \sqrt{2} \times \frac{1}{3}N$
89.	The figure shows the pos	sition – time $(x-t)$ graph of	of one-dimensional motion	of a body of mass 0.4 kg .
	Th	1		

The magnitude of each impulse is

a) 0.2 Ns

b) 0.4 Ns

c) 0.8 Ns

d) 1.6 Ns

90. A person is measuring his weight by standing on a weighing machine inside a lift. When the lift is at rest, the machine shows his weight to be 55 kg. In between the floor when the lift is moving up with a constant speed of 10 km/hr, he again measures his weight, which is

a) 55 *kg*

b) 65 kg

c) 50 kg

d) 45 kg

91. A cricket ball of mass 150 g collides straight with a bat with a velocity of 10 ms^{-1} . Batsman hits it straight back with a velocity of 20 ms^{-1} . If ball remains in contact with bat for 0. 1s, then average force exerted by the bat on the ball is

a) 15 N

b) 45 N

c) 150 N

d) 4.5 N

92. A satellite in force-free space sweeps stationary interplanetary dust at rate

$$\frac{dM}{dt} = \alpha v,$$

where M is the mass, v is the velocity of satellite and α is a constant

What is the deceleration of the satellite?

a)
$$\frac{-2\alpha v^2}{M}$$

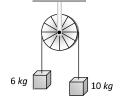
b)
$$-\alpha v^2/M$$
 c) $-\alpha v^2$

c)
$$-\alpha v^2$$

$$(1) \frac{\alpha v^2}{M}$$

- 93. A rocket with a lift-off mass 3.5×10^4 kg is blasted upward with an initial acceleration of 10 ms⁻². Then the initial thrust of the blast is
 - a) $3.5 \times 10^5 \text{ N}$
- b) $7.0 \times 10^5 \text{ N}$
- c) $14.0 \times 10^5 \text{ N}$
- d) $1.75 \times 10^5 \text{N}$

94. The tension in the spring is


$$5N \longleftrightarrow 5N$$

a) Zero

b) 2.5 N

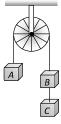
c) 5 N

- d) 10 N
- 95. A motor cycle and a car are moving on a horizontal road with the same velocity. If they are brought to rest by the application of brakes, which provided equal retardation, then
 - a) Motor cycle will stop at shorter distance
- b) Car will stop at a shorter distance
- c) Both will stop at the same distance
- d) Nothing can be predicted
- 96. A light string passes over a frictionless pulley. To one of its ends a mass of 6 kg is attached. To its other end a mass of 10 kg is attached. The tension in the thread will be

a) 24.5 N

b) 2.45 N

97. A flat plate moves normally with a speed v_1 towards a horizontal jet of water of uniform area of crosssection. The jet discharges water at the rate of volume V per second at a speed of v_2 . The density of water is ρ . Assume that water splashes along the surface of the plate at right angles to the original motion. The magnitude of the force acting on the plate due to the jet of water is


a)
$$\rho V v_1$$

b)
$$\rho V(v_1 + v_2)$$

c)
$$\frac{\rho V}{v_1 + v_2} v_1^2$$

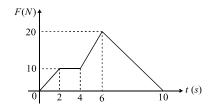
$$\mathrm{d})\,\rho\left[\frac{V}{v_2}\right](v_1+v_2)^2$$

98. Three equal weights A, B and C of mass 2 kg each are hanging on a string passing over a fixed frictionless pulley as shown in the figure. The tension in the string connecting weights B and C is

a) Zero

b) 13 N

c) 3.3 N


d) 19.6 N

- 99. A student attempts to pull himself up by tugging on his hair. He will not succeed
 - a) As the force exerted in small
 - b) The frictional force while gripping, is small
 - c) Newton's law of inertia is not applicable to living beings
 - d) As the force applied is internal to the system
- 100. The force required just to move a body up an inclined plane is double the force required just to prevent the body sliding down. If the coefficient of friction is 0.25, the angle of inclination of the plane is
 - a) 36.8°
- b) 45°

c) 30°

- 101. An aircraft is moving with velocity of $300 \, ms^{-1}$. If all the forces acting on it are balanced, then

a) It still moves with	n the same velocity	b) It will be just f	loating at the same point in s	pace		
c) It will fall down i	nstantaneously	d) It will lose its v	d) It will lose its velocity gradually			
102. A block rests on a rough inclined plane makir		ng an angle of 30° with the	horizontal. The coefficient o	of static		
friction between the	block and the plane is 0.	8. If the frictional force on	the block is 10 <i>N</i> , the mass of	of the		
block (in kg) is (tak	$e g = 10 m/s^2$					
a) 2.0	b) 4.0	c) 1.6	d) 2.5			
•	•		. The system moves over a			
_		_	ere $oldsymbol{g}$ is acceleration due to $oldsymbol{g}$	ravity)		
	<u> </u>	,		• •		
3 kg A C 5 kg						
1 kg		_				
a) <i>g</i>	b) $\frac{g}{g}$	c) $\frac{8g}{9}$	d) $\frac{10g}{q}$			
	,	,	,			
104. what is the maximu	m value of the force F su	ch that the block shown in	the arrangement, does not r	nove?		
$\mu = \frac{1}{2\sqrt{3}}$						
a) 20 N	b) 10 N	c) 12 N	d) 15 N			
105. A frictionless incline	ed plane of length $\it l$ havin	g inclination $θ$ is placed in	side a lift which is accelerati	ng		
downward with an a	acceleration $a(< g)$. If a b	olock is allowed to move, d	own the inclined plane, from	ı rest,		
then the time taken	by the block to slide from	n top of the inclined plane	to the bottom of the inclined	plane		
is	_	A .				
21	21 - [2]		21			
a) $\left \frac{2t}{\sigma} \right $	b) $\left \frac{a}{a-a} \right $	c) $\sqrt{\frac{2l}{g+a}}$	d) $\sqrt{\frac{2l}{(g-a)\sin\theta}}$			
√5	V	Y	V -			
•	•	in free space explodes an				
<u>-</u>	e explosion, a mass <i>m</i> of t	he space craft is left statio	nary. The velocity of the oth	er part		
is	Maa	M aaa	Maa			
a) $\frac{mv}{M-m}$	b) $\frac{Mv}{M-m}$	c) $\frac{M+m}{M}$	d) $\frac{Mv}{M}$			
		IVI	M ble. The surface over which b	locks		
-	n. What is the acceleration	-	ne. The surface over which b	IUCKS		
are placed is silloud	i, what is the acceleration	if of each block.				
	1 kg F = 28N					
a) 8 ms^{-2}	b) 4 ms ⁻²	c) 2 ms^{-2}	d) 14 ms ⁻²			
108. A car having a mass	of $1000~kg$ is moving at a	a speed of 30 <i>metres/sec</i> .	Brakes are applied to bring	the car		
to rest. If the friction	nal force between the tyre	es and the road surface is	5000 <i>newtons,</i> the car will c	ome to		
rest in						
a) 5 seconds	b) 10 seconds	c) 12 seconds	d) 6 seconds			
-	-	orce acts on it whose magn	itude changes with time. The	e force		
time graph is shown	ı below					

The velocity of the particle after 10 s is

- a) $20 \, ms^{-1}$
- b) $10 \, ms^{-1}$
- c) $75 \, ms^{-1}$
- d) $50 ms^{-1}$
- 110. A student unable to answer a question on Newton's law of motion attempts to pull himself up by tugging on his hair. He will not succeed
 - a) As the force exerted is small
 - b) The frictional force while gripping, is small
 - c) Newton's law of inertia is not applicable to living beings
 - d) As the force applied is internal to the system
- 111. A block moves down a smooth inclined plane of inclination θ . Its velocity on reaching the bottom is v. If it slides down a rough inclined plane of same inclination, its velocity on reaching the bottom is v/n, where n is a number greater than 1. The coefficient of friction is given by

a)
$$\mu = \tan \theta \left(1 - \frac{1}{n^2} \right)$$

b)
$$\mu = \cot \theta \left(1 - \frac{1}{n^2} \right)$$

c)
$$\mu = \tan \theta \left(1 - \frac{1}{n^2}\right)^{1/2}$$

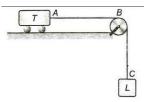
b)
$$\mu = \cot \theta \left(1 - \frac{1}{n^2} \right)$$

d) $\mu = \cot \theta \left(1 - \frac{1}{n^2} \right)^{1/2}$

- 112. A pendulum bob of mass 50 gm is suspended from the ceiling of an elevator. The tension in the string if the elevator goes up with uniform velocity is approximately
 - a) 0.30 N
- b) 0.40 N
- c) 0.42 N
- d) 0.50 N
- 113. A uniform metal chain is placed on a rough table such that one end of chain hangs down over the edge of the table. When one-third of its length hangs over the edge, the chain starts sliding. Then, the coefficient of static friction is

- 114. Two blocks of masses m and 2m are connected by a light string passing over a frictionless pulley. As shown in the figure, the mass m is placed on a smooth inclined plane of inclination 30° and 2m hangs vertically. If the system is released, the blocks move with an acceleration equal to

- 115. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2. The weight of the block is

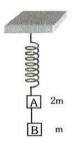

a) 20 N

b) 50 N

- c) 100 N
- 116. A Bullet of mass 10 gm is fired from a gun of mass 1 kg. If the recoil velocity is 5 m/s, the velocity of the muzzle is
 - a) $0.05 \, m/s$
- b) 5 m/s
- c) $50 \, m/s$
- d) $500 \, m/s$

117.		-	f the coefficient of friction b he length of the chain that o	
	the table is			
	a) 20%	b) 25%	c) 35%	d) 15%
118.	The maximum speed of a	car on a road turn of radius	s 30 m; if the coefficient of	friction between the tyres
	and the road is 0.4; will be			·
	a) 9.84 <i>m/s</i>		c) 7.84 <i>m/s</i>	d) 5.84 <i>m/s</i>
119.	•	•	•	itude of their resultant is 12
	· ·		e magnitude of the forces ir	
	a) 6,12	b) 11,7	c) 5,13	d) 14,4
120.	•		l table is pulled by an other	, ,
	-		iless pulley. The tension in	
	a) $\frac{m}{M+m}g$	b) $\frac{M}{M+m}g$	c) $\frac{1}{Mm}g$	d) $\frac{Mm}{M+m}g$
121.			0 ⁵ N during take off and ca	
	-	sec. The mass of the plan	_	•
	a) $10^2 kg$	b) $10^3 kg$	c) $10^4 kg$	d) $10^5 kg$
122.	, ,	, 0	cle moving with velocity \vec{v} .	, 0
	=		e sides of a triangle ABC (as	
	now move with velocity	,) F ·
	c N			
			50	
		. 11		
	$A \longrightarrow B$		1> r .1 →	
	a) \vec{v} remaining unchanged	d	b) Less than \vec{v}	l C Da
400	c) Greater than \vec{v}		d) \vec{v} in the direction of the	~
123.		The second of th	y 50 <i>km/h</i> on smooth horiz	contal rails. A mass of
	0 11	The velocity with which it		N = 0 1 //
	a) 2.5 <i>km/hour</i>	b) 20 km/hour	c) 40 km/hour	d) 50 <i>km/hour</i>
124.		_	it is the weight when he is s	standing on lift which is
	moving upwards with acc			
	a) 882 kg	•	c) 306 N	d) Zero
125.		=	velocity $10\ m/s$ and return	s with the same velocity
	within 0.01 second . The f	orce acted on bat is		
	a) 25 <i>N</i>	b) 50 <i>N</i>	c) 250 <i>N</i>	d) 500 <i>N</i>
126.	A block of mass $5 kg$ is on	a rough horizontal surface	e and is at rest. Now a force	of 24 N is imparted to it
	with negligible impulse. If	the coefficient of kinetic fi	riction is 0.4 and $g = 9.8 m$	x/s^2 , then the acceleration
	of the block is			
	a) $0.26 m/s^2$	b) $0.39 m/s^2$	c) $0.69 m/s^2$	d) $0.88 m/s^2$
127.	A smooth block is release	d at rest on a 45° incline ar	nd then slides a distance d .	The time taken to slide is n
	times as much to slide on	rough incline than on a sm	ooth incline. The coefficien	t of friction is
	1	1	1	1
	a) $\mu_k = 1 - \frac{1}{n^2}$	b) $\mu_k = \left 1 - \frac{1}{m^2} \right $	c) $\mu_s = 1 - \frac{1}{n^2}$	d) $\mu_s = \left 1 - \frac{1}{n^2} \right $
		•		•
128.	-		,	l a body of mass m is placed
	on this plate. The coefficie	ent of dynamics friction bet	tween this body and the pla	ite is μ . If a force $2\mu mg$ is

applied to the body of mass m along the horizontal, the acceleration of the plate will be


a) $\frac{\mu m}{M}$ g

- b) $\frac{\mu m}{(M+m)}$ g
- c) $\frac{2\mu m}{M}$ g
- d) $\frac{2\mu m}{(M+m)}$ g
- 129. A 60 kg man stands on a spring scale in a lift. At some instant he finds that the scale reading has changed from 60 kg to 50 kg for a while and then comes again to 60 kg mark. What should he conclude?
 - a) The lift was in constant motion upwards
- b) The lift was in constant motion downwards
- c) The lift while in motion suddenly stopped
- d) The lift while in motion upwards suddenly stopped
- 130. Two blocks of masses M and m are connected by a string passing over a pulley as shown in

the figure. The downward acceleration of the block with mass m is

- a) M/(m+M)g
- b) mg/(m+M)
- c) (m+M)/mg
- d) (n + M)/Mg
- 131. Two blocks A and B of masses 2m and m, respectively, are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in the figure. The magnitudes of acceleration of A and B, immediately after the spring is cut, are respectively

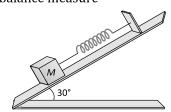
GPLUS EDUCATION

- a) g, g/2
- b) g/2, g
- c) g, g

- d) g/2, g/2
- 132. A false balance has equal arms. An object weigh X when placed in one pan and Y when placed in other pan, then the weight W of the object is equal to
 - a) √*XY*

- b) $\frac{X+Y}{2}$
- c) $\frac{X^2 + Y^2}{2}$
- $d) \frac{2}{\sqrt{X^2 + Y^2}}$
- 133. A 5000 kg rocket is set for vertical firing. The exhaust speed is 800 ms^{-1} . To give an initial upward acceleration of 20 ms^{-2} the amount of gas ejected per second to supply the needed thrust will be ($g = 10 ms^{-2}$)
 - a) $127.5 kg s^{-1}$
- b) $187.5 kg s^{-1}$
- c) $185.5 kg s^{-1}$
- d) $137.5 kg s^{-1}$
- 134. An object at rest in space suddenly explodes into three parts of same mass. The momentum of the two parts are $2p\hat{i}$ and $p\hat{j}$. The momentum of the third part
 - a) Will have a magnitude $p\sqrt{3}$

b) Will have a magnitude $p\sqrt{5}$


c) Will have a magnitude p

- d) Will have a magnitude 2p
- 135. A rifle of 20 kg mass can fire 4 bullets per second. The mass of each bullet is 35×10^{-3} kg and its final velocity 400 ms⁻¹. Then what force must be applied on the rifle so that it does not move backwards while firing the bullets?
 - a) 80 N

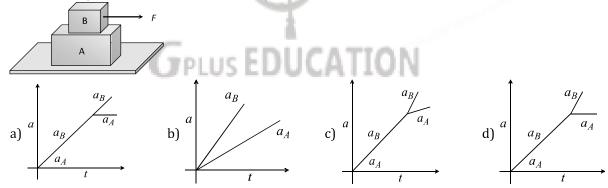
b) 28 N

- c) -112 N
- d) 56 N

136. A body of mass 5 kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measure

a) 50 N

b) 25 N

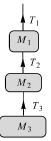

- c) 500 N
- d) 10 N
- 137. A vehicle of mass 120 kg is moving with a uniform velocity of 108 kmh $^{-1}$. The force required to step the vehicle in 10 s is
 - a) 90 N

- b) 180 N
- c) 360 N
- d) 720 N
- 138. A man is standing at the centre of frictionless pond of ice. How can he get himself to the shore
 - a) By throwing his shirt in vertically upward direction
- b) By spitting horizontally
- c) He will wait for the ice to melt in pond
- d) Unable to get at the shore
- 139. A block of mass M is attached to the lower end of a vertical rope of mass. An upward force P acts on the upper end of the rope. The system is free to move. The force exerted by the rope on the block is $\frac{PM}{M+m}$
 - a) In all cases

b) Only if the rope is uniform

c) In gravity-free space only

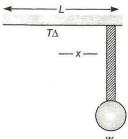
- d) Only if P > (M + m)g
- 140. A block B is placed on block A. The mass of block B is less that the mass of block A. Friction exists between the blocks, whereas the ground on which the block A is placed is taken to be smooth. A horizontal force F, increasing linearly with time begins to act on B. The acceleration a_A and a_B of blocks A and B respectively are plotted against t. The correctly plotted graph is



- 141. A plumb line is suspended from a ceiling of a car moving with horizontal acceleration of a. What will be the angle of inclination with vertical
 - a) $\tan^{-1}(a/g)$
- b) $tan^{-1}(g/a)$
- c) $\cos^{-1}(a/g)$
- d) $\cos^{-1}(g/a)$
- 142. A machine gun fires a bullet of mass 40 g with a velocity 1200ms⁻¹. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can be fired per second at the most?
 - a) Only one

b) Three

c) Can fire any number of bullets


- d) 144×48
- 143. A 10 kg stone is suspended with a rope of breaking strength 30 kg wt. The minimum time in which the stone can be raised through a height 10 m starting from rest is (taking g=10~N/kg)
 - a) 0.5 seconds
- b) 1.0 seconds
- c) $\sqrt{\frac{2}{3}}$ seconds
- d) 2.0 seconds
- 144. The masses M_1 , M_2 and M_3 are 5,2 and 3 kg respectively. These have been joined using massless, inextensible pieces of strings as shown in figure. If whole system is going upward with an acceleration of 2 ms⁻², then the value of tensions T_1 , T_2 and T_3 respectively are

- a) 29.4 N, 98 N, 98 N
- b) 98 N, 49 N, 29.4 N
- c) 118 N, 59 N, 35.4 N
- d) 35.4 N, 118 N, 59 N
- 145. A boy having a mass equal to 40 kilograms is standing in an elevator. The force felt by the feet of the boy will be greatest when the elevator
 - $(g = 9.8 metres/sec^2)$
 - a) Stands still
 - b) Moves downward at a constant velocity of 4 metres/sec
 - c) Accelerates downward with an acceleration equal to 4 metres/sec²
 - d) Accelerates upward with an acceleration equal to 4 metres/sec²
- 146. A person is standing in an elevator. In which situation he finds his weight less than actual weight
 - a) The elevator moves upward with constant acceleration
 - b) The elevator moves downward with constant acceleration
 - c) The elevator moves upward with uniform velocity
 - d) The elevator moves downward with uniform velocity
- 147. A man slides down on a telegraphic pole with acceleration equal to one-fourth of acceleration due to gravity. The frictional force between man and pole is equal to in terms of man's weight w

- 148. A rod of length L and weight W is kept horizontally. A small weight w is hung at one end. If the system balances on a fulcrum placed at T then

JPLUS EDUCATION

- a) $x = \frac{L}{2}$
- b) $x = \frac{wL}{2(W+w)}$ c) $x = \frac{wL}{W}$
- d) None of these
- 149. A block of mass m on a rough horizontal surface is acted upon by two forces as shown in figure. For equilibrium of block, the coefficient of friction between block and surface is

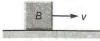
- a) $\frac{F_1 + F_2 \sin \theta}{mg + F_2 \cos \theta}$ b) $\frac{F_1 \sin \theta + F_2}{mg + F_2 \sin \theta}$ c) $\frac{F_1 + F_2 \cos \theta}{mg + F_2 \sin \theta}$ d) $\frac{F_1 \sin \theta F_2}{mg F_2 \cos \theta}$

- 150. A body of mass 10 kg is lying on a rough plane inclined at an angle of 30° to the horizontal and the coefficient of friction is 0.5. the minimum force required to pull the body up the plane is
 - a) 914 N
- b) 91.4 N
- c) 9.14 N
- d) 0.914 N
- 151. A block of mass 10 kg is placed on a rough horizontal surface having coefficient of friction $\mu = 0.5$. If a horizontal force of 100 N is acting on it, then acceleration of the block will be

				opius zuacution
	a) $0.5 m/s^2$	b) $5 m/s^2$	c) $10 m/s^2$	d) $15 m/s^2$
152.	A block of mass <i>M</i> is attac	thed to the lower end of a ve	ertical spring. The spring is	s hung from a ceiling and
		. The mass is released from		_
		uced in the length of the sp		
	a) $1 Mg/k$	b) $2Mg/k$	c) 4 <i>Mg/k</i>	d) $Mg/2k$
			, .	drops dead. The velocity of
	ice is	ing with 500 ms — mts a bi	ock of ice of mass 5 kg and	urops dead. The velocity of
	a) 50 cm/s	b) 60 cm/s	c) 40 cm/s	d) 200 cm/s
154.	A lift accelerated downwa	ırd with acceleration ' a^\prime . A ı	nan in the lift throws a bal	l upward with acceleration
	$a_0(a_0 < a)$. Then accelera	ation of ball observed by ob	server, which is on earth, i	s
	a) $(a + a_0)$ upward	b) $(a - a_0)$ upward	c) $(a + a_0)$ downward	d) $(a - a_0)$ downward
155.	The pulley and strings sho	own in figure are smooth ar	nd of negligible mass. For t	he system to remain in
	equilibrium, the angle θ sl	_		·
	$\sqrt{2}m$			
	m			
	a) 0°	b) 30°	c) 45°	d) 60°
156.		and $2m$ are connected by a $f l$		
	shown in the figure, the m	nass m is placed on a smoot	h inclined plane of inclinat	tion 30° and $2m$ hangs
	vertically. If the system is	released, the blocks move	with an acceleration equal	to
	2m	FPLUS EDUC	ATION	
	a) <i>g</i> /4	b) $g/3$	c) g/2	d) <i>g</i>
157.	If a body of mass m is move	ving on a rough horizontal s	surface of coefficient of kin	etic friction μ , the net
	electromagnetic force exe	rted by surface on the body	is	
	a) $mg\sqrt{1 + \mu^2}$	b) μ mg	c) mg	d) $mg\sqrt{1-\mu^2}$
	• •	ice with velocity 20 ms $^{-1}$ co		- •
150.	_	-		lace il iction over a
		$= 10 \text{ ms}^{-2}$, the coefficient		D 0 4
4 = 0	a) 0.5	b) 0.3	c) 0.2	d) 0.1
159.	0 0	standing on a trolley weighi	-	9
		n starts walking on the troll	ey with a velocity of 1 ms	⁻¹ , then after 4 s, his
	displacement relative to t	=		
	a) 6 m	b) 4.8 m	c) 3.2 m	d) 2.4 m
160.	When the speed of a movi			
	a) Its acceleration is doub	oled	b) Its momentum is doub	led
	c) Its kinetic energy is do	ubled	d) Its potential energy is o	doubled
161.	A boy B lies on a smooth 1	horizontal table and anothe	r body A is placed on B . Th	ne coefficient of friction

between A and B is μ . What acceleration given to B will cause slipping to occur between A and B

c) μ/g


a) μg 162. Impulse is a) A scalar b) g/μ

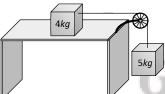
d) $\sqrt{\mu g}$

- b) Equal to change in the momentum of a body
- c) Equal to rate of change of momentum of a body
- d) A force
- 163. A body of mass 40 kg resting on a rough horizontal surface is subjected to a force P which is just enough to start the motion of the body. If $\mu_s = 0.5$, $\mu_k = 0.4$, $g = 10 \text{ ms}^{-2}$ and the force P is continuously applied on the body, then the acceleration of the body is
 - a) Zero

- b) 1 ms^{-2}
- c) 2 ms^{-2}
- d) 2.4 ms^{-2}

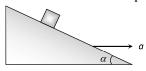
- 164. The coefficient of limiting friction μ is defined as
 - a) $\mu = \frac{R}{F}$
- b) $\mu = \sqrt{\frac{F}{R}}$
- c) $\mu = \frac{F}{R}$
- d) $\mu = \sqrt{\frac{R}{F}}$
- 165. A block B is pushed momentarily along a horizontal surface with an initial velocity v. If μ is the coefficient of sliding friction between B and the surface, block B will come to rest after a time

a) $\frac{v}{g\mu}$

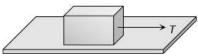

b) $\frac{g\mu}{v}$

c) $\frac{g}{v}$

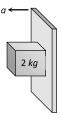
- d) $\frac{v}{g}$
- 166. A body of mass 10 kg slides along a rough horizontal surface. The coefficient of friction is $1/\sqrt{3}$. Taking $g = 10 \ m/s^2$, the least force which acts an angle of 30° to the horizontal is
 - a) 25 *N*


- b) 100 N
- c) 50 N

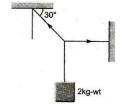
- d) $\frac{50}{\sqrt{3}} N$
- 167. Two masses of 4 kg and 5 kg are connected by a string passing through a frictionless pulley and are kept on a frictionless table as soon as shown in the figure. The acceleration of 5 kg mass is


- a) $49 \, m/s^2$
- b) $5.44 \, m/s^2$
- c) $19.5 \, m/s^2$
- d) $2.72 \, m/s^2$
- 168. The motion of a rocket is based on the principle of conservation of
 - a) Mass

- b) Kinetic energy
- c) Linear momentum
- d) Angular momentum
- 169. 10000 small balls, each weighing 1 g, strike one square centimeter of area per second with a velocity $100~\rm ms^{-1}$ in a normal direction and rebound with the same velocity. The value of pressure on the surface will be
 - a) $2 \times 10^3 \text{ Nm}^{-2}$
- b) $2 \times 10^5 \text{ Nm}^{-2}$
- c) 10^7 Nm^{-2}
- d) $2 \times 10^7 \text{ Nm}^{-2}$
- 170. A block is kept on a frictionless inclined surface with angle of inclination ' α '. The incline is given an acceleration ' α ' to keep the block stationary. Then α is equal to


a) g

- b) g tan α
- c) $g/\tan \alpha$
- d) $g \csc \alpha$
- 171. In the figure shown, a block of weight 10 N is resting on a horizontal surface. The coefficient of static friction between the block and the surface $\mu_s = 0.4$. A force of 3.5 N will keep the block in uniform motion, once it has been set in motion. A horizontal force of 3N is applied to the block then the block will



a) Move over the surface with constant velocity

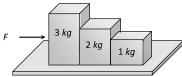
- b) Move having accelerated motion over the surface
- c) Not move
- d) First it will move with a constant velocity for some time and then will have accelerated motion
- 172. A rough vertical board has an acceleration a so that a 2 kg block pressing against it does not fall. The coefficient of friction between the block and the board should be

- a) > g/c
- b) < g/a
- c) = g/a
- d) > a/g
- 173. A light spring balance hangs from the hook of the other light spring balance and a block of mass M kg hangs from the former one. Then the true statement about the scale reading is
 - a) Both the scales read M/2 kg each
 - b) Both the scales read M Kg each
 - c) The scale of the lower one reads M kg and of the upper one zero
 - d) The reading of the two scales can be anything but the sum of the reading will be M kg
- 174. While waiting in a car at a stoplight, and 80 kg man and his car are suddenly accelerated to a speed of $5~{\rm ms}^{-1}$ as a result or rear end colllison. If the time of impact is 0.4 s, find the average force on the man
 - a) 100 N
- b) 200 N
- c) 500 N
- d) 1000 N
- 175. A body of weight 2 kg is suspended as shown in figure. The tension T_1 in the horizontal string (in kg-wt) is

a) $2/\sqrt{3}$

b) $\sqrt{3}/2$

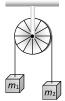
c) $2\sqrt{3}$

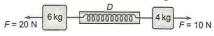

- d) 2
- 176. Rocket engines lift a rocket from the earth surface because hot gas with high velocity
 - a) Push against the earth

- b) Push against the air
- c) React against the rocket and push it up
- d) Heat up the air which lifts the rocket
- 177. A force of 98 *N* is required to just start moving a body of mass 100 *kg* over ice. The coefficient of static friction is
 - a) 0.6

b) 0.4

c) 0.2

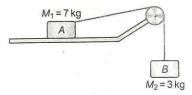

- ط) n 1
- 178. Consider the following statements about the blocks shown in the diagram that are being pushed by a constant force on a frictionless table


- A. All blocks move with the same acceleration
- B. The net force on each block is the same

Which of these statements are/is correct

- a) A only
- b) B only
- c) Both A and B
- d) Neither A nor B
- 179. Two masses $m_1 = 5 \, kg$ and $m_2 = 4.8 \, kg$ tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses when they are free to move $(g = 9.8 \, m/s^2)$

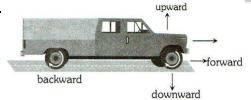
- a) $0.2 \, m/s^2$
- b) $9.8 \, m/s^2$
- c) $5 m/s^2$
- d) $4.8 \, m/s^2$
- 180. A dynamometer D is attached to two blocks of masses 6 kg and 4 kg. Forces of 20 N and 10 N are applied on the blocks as shown in figure. The dynamometer reads



a) 10 N

b) 20 N

c) 6 N


- d) 14 N
- 181. A block A of mass 7 kg is placed on a frictionless table. A thread tied to it passes over a frictionless pulley and carries a body B of mass 3 kg at the other end, as in figure. The acceleration of the system is (given g = 10 ms^{-2}

- a) 100 ms^{-2}
- b) 3 ms^{-2}
- c) 10 ms^{-2}
- d) 30 ms^{-2}

- 182. Which one of the following is not a force
 - a) Impulse
- b) Tension
- c) Thrust
- 183. A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket
 - a) Comes down with uniform acceleration
 - b) Moves round the earth in a geostationary orbit
 - c) Moves up with a uniform velocity
 - d) Moves up with uniform acceleration

184.

Direction of frictional force between wheel of the car and road is

- a) Upward
- b) Forward
- c) Backward
- d) Downward
- 185. A man drags a block through 10m on rough surface ($\mu = 0.5$). A force of $\sqrt{3}kN$ acting at 30° to the horizontal. The work done by applied force is
 - a) Zero

b) 15 kJ

c) 5 kI

- d) 10 kI
- 186. A body of mass 3 kg is acted on by a force which varies as shown in the graph below. The momentum acquired is given by

a) Zero

b) 5 N-s

- c) 30 N-s
- d) 50 N-s
- 187. A motor car has a width 1.1 *m* between wheels. Its centre of gravity is 0.62 *m* above the ground and the coefficient of friction between the wheels and the road is 0.8. What is the maximum possible speed, if the centre of gravity inscribes a circle of radius 15 *m*? (Road surface is horizontal)
 - a) $7.64 \, m/s$
- b) $6.28 \, m/s$
- c) $10.84 \, m/s$
- d) $11.23 \, m/s$

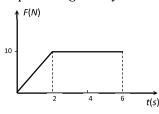
188. Statement I A cloth covers a table. Some dishes are kept on it. The cloth can be pulled out without dislodging the dishes from the table.

Statement II For every action there is an equal and opposite reaction.

- a) Statement I is true, statement II is true; statement II is a correct explanation for statement I
- b) Statement I is true, statement II is true; statement II is not a correct explanation for statement I
- c) Statement I is true, statement II is false
- d) Statement I is false, statement II is true
- 189. A mass m hangs with a help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass m and radius R. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m, if the string does not slip on the pulley, is
 - a) $\frac{3}{2} g$

c) $\frac{2}{3} g$

- 190. A force of 50 *dynes* is acted on a body of mass 5 g which is at rest for an interval of 3 seconds, then impulse is
 - a) $0.15 \times 10^{-3} N s$ b) $0.98 \times 10^{-3} N s$ c) $1.5 \times 10^{-3} N s$ d) $2.5 \times 10^{-3} N s$


- 191. A ball of mass 0.5 kg moving with a velocity of 2 m/sec strikes a wall normally and bounces back with the same speed. If the time of contact between the ball and the wall is one millisecond, the average force exerted by the wall on the ball is
 - a) 2000 N
- b) 1000 N
- c) 5000 N
- d) 125 N
- 192. A hockey player receives a corner shot at a speed of 15 ms $^{-1}$ at an angle of 30° with the y-axis and then shoots the ball of mass 100 g along the negative x-axis with a speed of 30 ms⁻¹. If it remains in contact with the hockey stick for 0.01 s, the force imparted to the ball in the x-direction is
 - a) 281.25 N
- b) 187.5 N
- c) 562.5 N
- d) 375 N
- 193. The mass of a body measured by a physical balance in a lift at rest is found to be m. If the lift is going up with an acceleration a, its mass will be measured as
 - a) $m\left(1-\frac{a}{g}\right)$
- b) $m\left(1+\frac{a}{g}\right)$ c) m

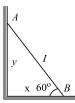
- d) Zero
- 194. Same force acts on two bodies of different masses 3 kg and 5 kg initially at rest. The ratio of times required to acquire same final velocity is
 - a) 5:3

b) 25:9

c) 9:25

- d) 3:5
- 195. A body of mass 3kg is acted on by a force which varies as shown in the graph below. The momentum acquired is given by

a) Zero

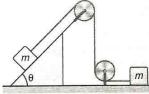

- b) 5 *N-s*
- c) 30 *N-s*
- d) 50 *N-s*

- 196. In the above Question, if the string *C* is stretched slowly, then
 - a) The portion *AB* of the string will break
- b) The portion BC of the string will break

c) None of the strings will break

- d) None of the above
- 197. Which one of the following is not a contact force
 - a) Viscous force
- b) Air resistance
- c) Friction
- d) Magnetic force
- 198. Figure represents a painter in a crate which hangs along the side of a building. When the painter of mass 100 kg pulls the rope, the force exerted by him on the floor of the crate is 450 N. If the crate weighs 125 kg, then the acceleration in the rope is (Given $g = 10 \text{ ms}^{-2}$)
 - a) 1 ms^{-2}
- b) 2 ms^{-2}
- c) 3 ms^{-2}
- d) 4 ms^{-2}

199. A rod length AB is moving with ends remaining in contact with frictionless wall and floor. If at the instant shown, the velocity of end B is 3 ms⁻¹ towards negative x-direction, then magnitude of velocity of end A will be



a) 3 ms

- b) $\sqrt{3} \text{ ms}^{-1}$
- c) 1.5 ms^{-1}
- 200. An iron block of mass 5 kg is kept on a trolley. If the trolley is being pushed with an acceleration of 5 m/s^2 , What will be the force of friction between the block and the trolley surface? (Take the coefficient of static friction between the block and the surface to be 0.8)

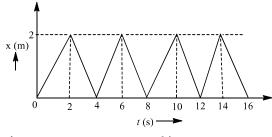
b) 5 N

- 201. For the system shown in figure, the pulleys are light and frictionless. The tension in the string will be

a) $\frac{2}{3}mg\sin\theta$

- b) $\frac{3}{2}$ mg sin θ
- c) $\frac{1}{2}$ mg sin θ
- 202. A body of mass 4 kg is accelerated upon by a constant force, travels a distance of 5 m in the first second and a distance of 2 m in the third second. The force acting on the body is
 - a) 6N

b) 8 N


c) 2 N

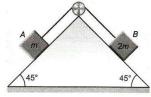
- d) 4 N
- 203. 10,000 small balls, each weighing 1 gm, strike one square cm of area per second with a velocity 100 m/sin a normal direction and rebound with the same velocity. The value of pressure on the surface will be
 - a) $2 \times 10^3 N/m^2$
- b) $2 \times 10^5 N/m^2$ c) $10^7 N/m^2$
- d) $2 \times 10^7 N/m^2$
- 204. A bob of mass 0.450 kg hangs from the massless string of a long simple pendulum. A bullet of mass 0.50 kg is fired vertically from below into the bob. The bullet gets embedded into the bob and the combination rises vertically through a height of 1.8 m. If $g = 10 \text{ ms}^{-2}$, then the velocity of the bullet is
 - a) 6 ms^{-1}
- b) 60 ms^{-1}
- c) 600 ms^{-1}
- d) 6000 ms^{-1}
- 205. Force of 4 N is applied on a body of mass 20 kg. The work done in 3rd second is

b) 4 J

c) 16 J

- d) 1.2 J
- 206. The figure shows the position-time (x-t) graph of one-dimensional motion of a body of mass 0.4 kg. The magnitude of each impulse is

a) 0.4 Ns


- b) 0.8 Ns
- c) 1.6 Ns
- d) 0.2 Ns
- 207. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied at the free end of the rope, the force exerted by the rope on the block is
- c) P

d) $\frac{PM}{M+m}$

	-			ted upon by a forward force
	00 N due to the eng	ine and a retarding force of	f 500 N due to friction. Wha	at will be its velocity after
10 s		12.40	3.45 /	12.00
a) 5 <i>1</i>	•	b) 10 m/s	c) 15 m/s	d) 20 m/s
	•	•	is falling at the rate 50kg/m	in. The extra force
-		ain with a constant velocit	•	
a) 16		b) 1200 N	c) 1000 N	d) 166.6 N
			magnitude, is perpendicula	ir to the smaller of the two
	s. The angle betwee			
a) 60		b) 120°	c) 150°	d) 90°
				a bead of mass m on it. The
		•	at the lowest point of the pa	
		-	xis with a constant accelera	
new e	equilibrium positior	of the bead, where the bea	ad can stays at rest with res	pect to the wire, from the y -
axis i				
a) $\frac{a}{gk}$		b) $\frac{a}{2ak}$	c) $\frac{2a}{ak}$	d) $\frac{a}{4ak}$
_		-9	9.4	-9.0
			a light, inextensible string v	
friction	onless pulley. If the	pulley is moving upward w	rith uniform acceleration g,	then the tension in the
string	g is			
2) 41	$\frac{n_1m_2}{+m_2}$ g	$m_1 m_2 \sigma$	c) $\frac{m_1 m_2}{m_1 + m_2}$ g	$\frac{m_1 - m_2}{m_1 - m_2} g^2$
m_1	$+m_2^6$	$^{6)}4m_1m_2^{8}$	$m_1 + m_2^8$	$m_1 + m_2$
213. A blo	ck of mass m is rest	ing on a smooth horizontal	surface. One end of a unifo	rm rope of mass $\left(\frac{m}{3}\right)$ is fixed
to the	block, which is pul	led in the horizontal direct	ion by applying force F at t	he other end. The tension in
the m	iddle of the rope is			
a) $\frac{8}{6}$	7	b) $\frac{1}{7}F$	$\begin{pmatrix} 1 \\ -F \end{pmatrix}$	d) $\frac{7}{8}F$
U		(- Z)	8	U
			by applying a force by hand.	
		and the ball goes upto 2 m	height further, find the mag	gnitude of the force.
	$\det g = 10 m/s^2$			
a) 16		b) 20 <i>N</i>	c) 22 <i>N</i>	d) 4 <i>N</i>
			ed by massless strings as sh	
They	are pulled with a fo	$T_3 = 40 N. \text{ If } m_1 = 10 R$	kg , $m_2 = 6 kg$ and $m_3 = 4 kg$	kg , the tension T_2 will be
	m_1 T_1 m_2 T_2 m_3	T3		
م) 20	N	b) 40 N	a) 10 M	4) 22 M
a) 20		b) 40 N	c) 10 N	d) 32 N
	_	iplied on a block mass <i>in</i> pr	aced on a rough inclined pl	ane of inclination 6. The
1101111	al reaction <i>N</i> is			
	_ /			
F	< Y			
	- canon			
_	/e			
-	g cos θ	b) $mg \sin \theta$	c) $mg\cos\theta - F\cos\theta$	
		_	ed on a fixed triangular wed	
			n in figure. The wedge is in	
horiz	ontal on both the sid	des. The coefficient of fricti	on between the block A and	d the wedge is 2/3 and that

acceleration of A will be

between the block B and the wedge is 1/3 and both the blocks A and B are released from rest, the

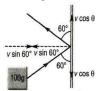
a) −1

b) 1.2

c) 0.2

d) Zero

218. When a bullet is fired at a target, its velocity decreases by half after penetrating 30 *cm* into it. The additional thickness it will penetrate before coming to rest is


a) 30 cm

b) 40 cm

c) 10 cm

d) 50 cm

219. A mass of 100 g strikes the wall with speed 5 ms⁻¹ at an angle as shown in figure and it rebounds with the same speed. If the contact time is 2×10^{-3} s, what is the force applied?

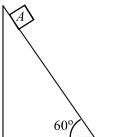
a) $250\sqrt{3}$ N to right

b) 250 N to right

c) $250\sqrt{3}$ N to left

d) 250 N to left

220. The linear momentum ρ of a body moving in one dimension varies with time according to the equation $\rho = a + bt^2$ where a and b are positive constants. The net force acting on the body is


a) A constant

b) Proportional to t^2

c) Inversely proportional to t

d) Proportional to t

221. Two fixed frictionless in inclined plane making an angle 30° and 60° with the vertical are shown in the figure. Two blocks *A* and *B* are placed on the two planes. What is the relative vertical acceleration of *A* with respect to *B*?

B

PLUS EDUCATION

 30°

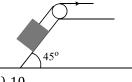
a) 4.9 ms⁻² in horizontal direction

b) 9.8 ms⁻² in vertical direction

c) Zero

d) 4.9 ms⁻² in vertical direction

222. A rocket is propelled by a gas which is initially at a temperature of 4000 *K*. The temperature of the gas falls to 1000 *K* as it leaves the exhaust nozzle. The gas which will acquire the largest momentum while leaving the nozzle, is


a) Hydrogen

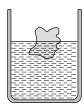
b) Helium

c) Nitrogen

d) Argon

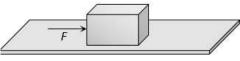
223. A block of mass 200 kg is being pulled up by men on an inclined plane at angle of 45° as shown. The coefficient of static friction is 0.5. Each man can only apply a maximum force of 500 N. Calculate the number of men required for the block to just start moving up the plane

a) 10


b) 15

c) 5

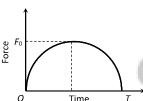
d) 3


224. A man of 50 kg is standing at one end on a boat of length 25 m and mass 200 kg. If he starts running and when he reaches the other end, he has a velocity 2 ms^{-1} with respect to the boat. The final velocity of the boat is (in ms⁻¹)

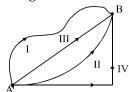
- 225. A body floats in a liquid contained in a beaker. If the whole system as shown in figure falls freely under gravity, then the upthrust on the body due to liquid is

a) Zero

- b) Equal to the weight of liquid displaced
- c) Equal to the weight of the body in air
- d) None of these
- 226. A block of mass 2 kg is kept on the floor. The coefficient of static friction is 0.4. If a force F of 2.5 Newtons is applied on the block as shown in the figure, the frictional force between the block and the floor will be



- a) 2.5 N
- b) 5 N


- c) 7.84 N
- d) 10 N
- 227. A light string passing over a smooth light pulley connects two blocks of masses m_1 and m_2 (vertically). If the acceleration of the system is g/8 then the ratio of the masses is
 - a) 8:1

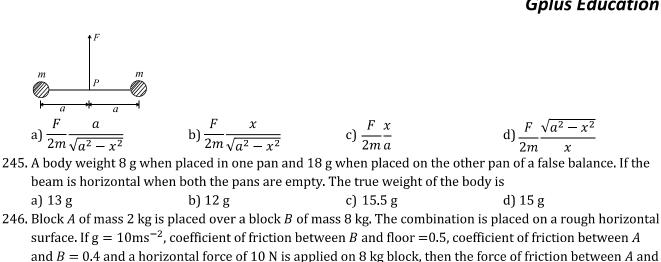
b) 9:7

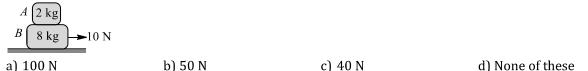
- d)5:3
- 228. A particle of mass m, initially at rest, is acted upon by a variable force F for a brief interval of time T. It begins to move with a velocity u after the force stops acting. F is shown in the graph as a function of time. The curve is semicircle

- c) $u = \frac{\pi F_0 T}{4m}$
- 229. In a gravitational force field a particle is taken from A to B along different paths as shown in figure. Then

- a) Work done along path I will be maximum
- b) Work done along path III will be minimum
- c) Work done along path IV will be minimum
- d) Work done along all the paths will be the same
- 230. A 100 g iron ball having velocity 10 m/s collides with a wall at an angle 30° and rebounds with the same angle. If the period of contact between the ball and wall is 0.1 second, then the force experienced by the wall is
 - a) 10 N

- b) 100 N
- c) 1.0 N


d) 0.1 N


- 231. A force of 100 dyne acts a mass of 5 gram for 10 s. The velocity produced is b) 200 cms^{-1}
 - c) 20 cms^{-1}
- d) 2 cms^{-1}
- 232. An astronaut of weight Mg is in a rocket accelerating upward with an acceleration of 4g. The apparent weight of the astronaut will be

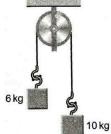
a) 2000 cms^{-1}

		b) 4 <i>M</i> g t on a horizontal surface. A , the block will be lifter up?	c) Mg force F is acted on the bloce	d) Zero k as shown in figure. For
	M 30°			
	a) 98 N	b) 49 N	c) 200 N	d) None of these
234.	A machine gun fires a bull	et of mass 40 $\it g$ with a velo	city $1200ms^{-1}$. The man 1	nolding it can exert a
	maximum force of 144 N	on the gun. How many bull	ets can he fire per second a	t the most
	a) One	b) Four	c) Two	d) Three
	The velocity of a body of r body is	nass $20~kg$ decreases from	20 m/s to $5 m/s$ in a distant	nce of 100 m. Force on the
	a) −27.5 <i>N</i>	b) -47.5 <i>N</i>	c) -37.5 <i>N</i>	d) −67.5 <i>N</i>
236.	_	_	ends of a string that goes of the contract of a string that $g=$	
	a) 8 m/s², 144 N	b) 4 m/s ² , 112 N	c) 6 m/s ² , 128 N	d) 2 m/s ² , 96 N
237.			velocity of 2 m/s on a rough	
			ace is 0.20. The amount of h	eart generated in 5 sec is
	(J = 4.2 joule/cal and g = 4.2 joule/cal)			
	a) 9.33 <i>cal</i>	b) 10.21 <i>cal</i>	c) 12.67 <i>cal</i>	d) 13.34 <i>cal</i>
238.	coefficient of friction 0.6 t	o avoid skidding is	river must traverse a flat cu	
	a) 60 ms^{-1}		c) 15 ms ⁻¹	d) 25 ms^{-1}
239.			ceiling of an elevator. The t	ension in the string if the
		form velocity is approxima	-	
	a) 0.30 N	b) 0.40 N	c) 0.42 N	d) 0.50 N
240.	of 19 N is applied on the b	lock parallel to the floor, th	rface. The coefficient of stanen the force of friction between	ween the block and floor is
	a) 32 N	b) 18 N	c) 19 N	d) 9.8 N
241.	_	tht on floor and rebounds t	o 5 m. Time of contact is 0.0	02 s. Find acceleration
	during impact.	1) 4000 =2) 2000 - 2	12 4 5 0 0 - 2
242	a) 1200 ms ⁻²	b) 1000 ms ⁻²	c) 2000 ms ⁻²	d) 1500 ms ⁻²
242.	M is		f ion g , the force exerted on	the floor by a passenger of
	a) <i>Mg</i>	b) $\frac{1}{2} Mg$	c) Zero	d) 2 <i>Mg</i>
	In the given figure the pul	4	ad frictionless. If the friction F will be equal to	, ,
	a) $(F-f)/m$	b) $\left(\frac{F}{2} - f\right)/m$	c) <i>F/m</i>	d) None of these
244.	The two particles of mass	m each are tied at the ends	s of a light string of length 2	a. The whole system is

244. The two particles of mass m each are fied at the ends of a light string of length 2a. The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance 'a' from the center P (as shown in the figure). Now, the mid-point of the string is pulled vertically upwards with a small but constant force F. As a result, the particles move towards each other on the surface. The magnitude of acceleration, when the separation between them becomes 2x, is

- 247. A man of mass 60 kg and a boy mass 30 kg are standing together on frictionless ice surface. If they push each other apart, man moves away with a speed of 0.4 ms¹ relative to ice after 5 s. They will be away from each other at a distance of
- a) 9.0 m b) 3.0 m c) 6.0 m d) 30 m 248. A player kicks a football of mass 0.5 kg and the football begins to move with a velocity of 10 m/s. If the contact between the leg and the football lasts for $\frac{1}{50}$ sec, then the force acted on the football should be
 - a) 2500 N
- 249. Two blocks masses 1 kg and 2 kg rest on a smooth horizontal table. When the 2 kg block is pulled by a certain force *F*, the tension *T* in the string is 1.5 N. The value of *F* is

- 250. A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.8. If the frictional force on the block is 10 N, the mass of the block (in kg) is (Take $g = 10 \text{ ms}^{-2}$)
- a) 2.0 b) 4.0 c) 1.6
- 251. A bag of sand of mass m is suspended by a rope. A bullet of mass $\frac{m}{20}$ is fired at it with a velocity v and gets embedded into it. The velocity of the bag finally is
- c) $\frac{v}{20}$ a) $\frac{v}{20} \times 21$
- 252. Two carts of masses 200 kg and 300 kg on horizontal rails are pushed apart. Suppose the coefficient of friction between the carts and the rails are same. If the 200 kg cart travels a distance of 36 m and stops, then the distance travelled by the cart weighing 300 kg is


253. If a block slides down a plane inclined at 30° with horizontal, then the coefficient of friction between the block and inclined plane is

B is

Gpl	I	ΓA		:	
UTDI	1115	ro	uc	ati	or
- -	-	_ ~	~~		•

a) 0.5	b) $\frac{1}{3}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{1}{\sqrt{3}}$		
254. A cylinder roll up an inclined plane, reaches some height and then rolls down (without slipping throughout these motions). The directions of frictional force acting on the cylinder are a) Up the inclined while ascending and down the incline while descending b) Up the incline while ascending as well as descending c) Down the incline while ascending and up the incline while descending d) Down the incline while ascending as well as descending 255. A machine gun fires <i>n</i> bullets per second, each of mass <i>m</i> . If the speed of each bullet is <i>u</i> , then the force of					
recoil is a) <i>mn</i> g	b) mnv	c) <i>mnv</i> g	$d)\frac{mnv}{g}$		
	•	, ,	g end of the rope, the mass m will		
ascend with an ac			•		
a) $\frac{g}{3}$	b) $\frac{g}{2}$	c) g	d) 2 g		
257. A partly hanging maximum possible table is a) $\frac{l}{L-l}$	le length that can hang in equ $rac{L}{l}$	nilibrium. The coefficient o $rac{l}{L}$	rough horizontal table. l is the friction between the chain and $ \frac{lL}{L+l} $ a figure. The acceleration of 2 kg		
30°		2	2		
a) $1.66 m/s^2$	b) $2.66 m/s^2$	c) $3.66 m/s^2$	d) $4.66 m/s^2$		
The blocks are ke	pt on a smooth horizontal pl	ane. Initially the blocks are	massless) of spring constant <i>k</i> . e at rest and the spring is M to pull it. Find the force on the		
a) $\frac{mF}{M}$	b) $\frac{(M+m)F}{m}$	c) $\frac{mF}{(m-1)^2}$	d) $\frac{MF}{(m+M)}$		
1.1	m wing quantities measured fr				
a) Force	b) Velocity	c) Displacement	d) Kinetic energy		
261. A solid disc of mastrike the disc each $(g = 10ms^{-2})$	ss M is just held in air horizon th with a velocity $6 ms^{-1}$. If t	ntally by throwing 40 stor the mass of each stone is 0	nes per sec vertically upwards to $0.05 \ kg$ what is the mass of the disc		
a) 1.2 <i>kg</i>	b) 0.5 <i>kg</i>	c) 20 <i>kg</i>	d) 3 <i>kg</i>		
262. If a person with a spring balance and a body hanging from it goes up and up in an aeroplane, then the reading of the weight of the body as indicated by the spring balance will					

a) Go on increasing	9	b) Go on decreasir	ng
c) First increase an	nd then decrease	d) Remain the sam	ne
263. A vehicle of mass n	n is moving on a rough hori	zontal road with moment	um P. If the coefficient of friction
between the tyres	and the road be μ , then the	stopping distance is	
P	P^2	c) $\frac{P}{2\mu m^2 g}$	P^2
a) $\frac{P}{2\mu mg}$	$\frac{1}{2\mu mg}$	$\frac{c}{2\mu m^2 g}$	$\frac{a}{2\mu m^2 g}$
264. Consider a car mov	ving along a straight horizo	ntal road with a speed of 7	2 km/h. If the coefficient kinetic
		-	hich the car can be stopped is $[g =$
$10 ms^{-2}$	•		
a) 30 m	b) 40 m	c) 72 m	d) 20 <i>m</i>
•	•	•	tion and it is moving with an
			direction of the velocity of the
body after 5 sec w	·	outin The magnitude and	direction of the velocity of the
a) $10 m/s$, toward			
b) $10 m/s$, toward			
c) $10 m/s$, toward			
d) $10 m/s$, toward			
•	kg, resting on a horizontal s	urface is connected by a c	ord nassing over a light
			etic friction between the block and
	Fension in the cord is [Take	_	ede intedoir between the block and
a) 49 N	b) 36 N	c) 36.75 N	d) 2.45 N
,			om the rear end. The coefficient of
			From rest with $2 m/s^2$ acceleration.
			Tom rest with 2 m/s acceleration.
	nce covered by the truck wl $$ b) $30m$	c) $40 m$	d) 50 m
a) 20 m	,		,
			e balance is suspended vertically
	nt. The reading on the sprii 10ms ^{–2})		going up with an acceleration of
·-	•	c) 52.75 N	4) 47 25 N
a) 51.25 N	b) 48.75 N	-	d) 47.25 N force of 28.2 <i>N</i> . The frictional force
•	-	surface is just moved by a	force of 28.2 W. The frictional force
and the normal rea	action are 28.2 N		
	7		
	1 45		
↓ 50	N		
a) 10 <i>N</i> , 15 <i>N</i>	b) 20 N, 30 N	c) 2 N, 3 N	d) 5 <i>N</i> , 6 <i>N</i>
270. The tension in the	string in the pulley system	shown in the figure is	

a) 75 N

b) 80 N

c) 7.5 N

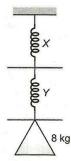
d) 30 N

271. A block of mass 50~kg slides over a horizontal distance of 1m. If the coefficient of friction between their surface is 0.2, then work done against friction is

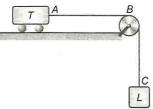
a) 98 *J*

b) 72 J

c) 56 J


d) 34 J

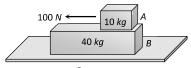
272.	-	~	et full of water, having a ho ts to move up and down wi	le at its bottom. The rate of th same acceleration and		
	then that rates of flow of	f water are R_u and R_d , then	1			
	a) $R_0 > R_u > R_d$	b) $R_u > R_0 > R_d$	c) $R_d > R_0 > R_u$	d) $R_u > R_d > R_0$		
273.	For ordinary terrestrial	experiments, the observer	in an inertial frame in the	following cases is		
	a) A child revolving in a	giant wheel				
	b) A driver in a sport car	moving with a constant hi	igh speed of 200km h ^{–1} on	a straight rod		
	c) The pilot of an aeropl	ane which is taking off		-		
	d) A cyclist negotiating a	_				
274.	, ,	•	A man hangs his bag on the	spring and spring reads 49		
		N, when the lift is stationary. If the lift moves downward with an acceleration of 5 ms^{-2} , the reading of				
	the spring balance will b			, 6		
	a) 24 N	b) 74 N	c) 15 N	d) 49 N		
275.	-		t = 0. It is subjected to a fo	-		
		is depicted by which of the		101 (0)		
	F_0	F_0b	F_{0}	F_0		
	\overline{mb}	$\frac{F_0 b}{m b}$	c) $\frac{1}{mb}$	\overline{mb}		
	a) / \	b) $v(t)\uparrow$	c) mb	d) \		
	v(t)	$t \rightarrow$	v(t)	(t) 1		
076	A		$l \rightarrow$	a cc· · · ·		
276.				ieces fly off in two mutually		
			ns^{-1} and the other with a v	relocity of 4 j ms ⁻¹ . If the		
	-	4 s, the force acting on the t	-			
	a) $(3 \hat{i} + 4 \hat{j}) \times 10^{-4}$		c) $(3 \hat{i} + 4 \hat{j}) \times 10^4$	d) $-(3\hat{i} + 4\hat{j}) \times 10^4$		
277.		ts from the origin with an i				
	$\mathbf{u} = (30\hat{\mathbf{i}} + 40\hat{\mathbf{j}}) \text{ms}^{-1}$. I	f a constant force (–6 î – 5	(\hat{j}) N acts on the body, the ti	me in which the y		
	component of the veloci	ty becomes zero is	CATION			
	a) 5 s	b) 20 s	c) 40 s	d) 80 s		
278.	A player caught a cricke	t ball of mass 150 g moving	g at the rate of 20 ${ m ms}^{-1}$. If t	he catching process be		
	completed in 0.1 s, the fo	orce of blow exerted by the	e ball on the hands of the p	layer is		
	a) 0.3 N	b) 30 N	c) 300 N	d) 3000 N		
279.	In an air collision betwe	en an aeroplane and a bird	, the force experienced by	the bird as compared to that		
	of the aeroplane is					
	a) Very high	b) Equal	c) Less	d) Zero		
280.			n from a ceiling. A force of	50 N in the horizontal		
	direction is applied at the mid-point of the rope. The angle made by rope with the vertical, in equilibrium					
	is					
	a) 50°	b) 60°	c) 30°	d) 45°		
281.	-	•	•	ver a frictionless pulley fixed		
			0. 0	n the table and block is 0.4.		
		- ·	o prevent it from moving is			
	C					
	A					


282. A body of mass 8 kg is suspended through two light springs X and Y connected in series as shown in figure. The reading is X and Y respectively are

c) Zero

b) 5 kg

- a) 8 kg, zero
- b) Zero, 8 kg
- c) 6 kg, 2 kg
- d) 8 kg, 8 kg
- 283. A trolley T (mass 5 kg) on a horizontal smooth surface is pulled by a load L (2 kg) through a uniform rope ABC of length 2 m and mass 1kg. As the load falls from BC = 0 to BC = 2 m, its acceleration (in ms⁻²) changes from (Take $g = 10 \text{ms}^{-2}$)


- a) 20/6 to 20/5
- b) 20/8 to 30/8
- c) 20/5 to 30/6
- d) None of these
- 284. A uniform metal chain is placed on a rough table such that one end of it hangs down over the edge of the table. When one-third of its length hangs over the edge, the chain starts sliding. Then, the coefficient of static friction is
 - a) 3/4

b) 1/4

c) 2/3

- d) 1/2
- 285. In which of the following cases forces may not be required to keep the
 - a) Particle going in a circle

- b) Particle going along a straight line
- c) The momentum of the particle constant
- d) Acceleration of the particle constant
- 286. A stationary bomb explodes into three pieces. One piece of 2 kg mass moves with a velocity of 8 ms $^{-1}$ at right angles to the other pieces of mass 1 kg moving with a velocity of 12 ms $^{-1}$. If the mass of the third piece is 0.5 kg, then its velocity is
 - a) 10 ms^{-1}
- b) 20 ms^{-1}
- c) 30 ms^{-1}
- d) 40 ms^{-1}
- 287. A 40 kg slab rests on a frictionless floor as shown in the figure. A 10 Kg block rests on the top of the slab. The static coefficient of friction between the block and slab is 0.60 while the kinetic friction is 0.40. The 10 kg block is acted upon by a horizontal force 100 N. If g=9.8 m/s^2 , the resultant acceleration of the slab will be

- a) $0.98 \, m/s^2$
- b) $1.47 \ m/s^2$
- c) $1.52 \, m/s^2$
- d) $6.1 \, m/s^2$
- 288. The normal reaction on a body placed in a lift moving up with constant acceleration 2 ms^{-1} is 120 N. Mass of body is (Take $g=10\ ms^{-2}$)
 - a) 10 kg
- b) 15 kg
- c) 12 kg
- d) 5 kg
- 289. A rope of length 5 *m* is kept on frictionless surface and a force of 5*N* is applied to one of its end. Find tension in the rope at 1 *m* from this end
 - a) 1 N

b) 3 N

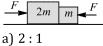
c) 4 N

- d) 5 N
- 290. A balloon has 5 g of air. A small hole is pierced into it. The air escapes at a uniform rate with a velocity of $4~\rm cm s^{-1}$. If the balloon shrinks completely in 2.5 s the average force acting on the balloon is
 - a) 2 dyne
- b) 50 dyne
- c) 8 dyne
- 4) 8 N

			Gplus Education
		e coefficient of friction betwee the distance is proportional to	-
a) μ	b) $\sqrt{\mu}$	c) 1/µ	d) $1/\sqrt{\mu}$
- · · · · · · · · · · · · · · · · · · ·	- y -	on the earth. The speed of the	•
a) $1.5 \times 10^8 ms^{-1}$	b) $2.1 \times 10^8 \ ms^{-1}$	c) $2.6 \times 10^8 ms^{-1}$	d) $5.2 \times 10^8 ms^{-1}$
_		ollides with wall at an angle 3 ne ball and wall is 0.1 s, then tl	
a) 10 N	b) 100 N	c) 1.0 N	d) 0.1 N
294. A body, whose mor	mentum is constant, must h	ave constant	
a) Force	b) Velocity	c) Acceleration	d) All of these
impulse is		s 5 g which is at rest for an int	
a) $0.15 \times 10^{-3} Ns$		c) $1.5 \times 10^{-3} Ns$ g respectively kept on a smoot	
applied to A (as sh the following is tru	own in figure 1) and $T^{\prime\prime}$ be t	e tension in the spring when a the tension when it is applied	horizontal force $F = 500 N$ is to B (figure 2), then which of
a) $T = T' = 500 N$ c) $T = 200 N, T' = 100 N$		b) $T = T' = 250 N$ d) $T = 300N, T' = 200$	O <i>N</i>
	ne on the block has a magnit	ed plane of inclination $\boldsymbol{\theta}$ with cude	the horizontal. The force
a) <i>m</i> g	b) $\frac{mg}{\cos \theta}$	c) $mg\cos\theta$	d) m g tan θ
298. A force-time graph between 0 and 7 s	for a linear motion of a bod	ly is shown in the figure. The o	change in linear momentum
Force (N)0 -1 -2 -2 -2 -2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
a) 2 Ns	b) 3 Ns	c) 4 Ns	d) 5 NS
	•	se breaking strength is three t	•
		ne can be moved up without h	_
a) g	b) 2 g	c) 3 g	d) 4 g
		le 30°. Coefficient of kinetic fr	

c) $1.5 \ m/s^2$

d) $5 m/s^2$


incline plane is $1/\sqrt{3}$. What is acceleration of block

a) Zero

b) $2 m/s^2$

				•
301.	A body of mass 1000 kg final velocity	is moving horizontally with	a velocity $50 m/s$. A mass	of 250 kg is added. Find the
	a) 40 <i>m/s</i>	b) 20 <i>m/s</i>	c) $30\sqrt{2} \ m/s$	d) 50 <i>m/s</i>
302.	The acceleration of the 5	00 g block in figure is		
	100 g	500 g		
	50 g			
	a) $\frac{6g}{13}$ downwards	b) $\frac{7g}{13}$ downwards	c) $\frac{8g}{13}$ downwards	d) $\frac{9g}{13}$ upwards
303.	A force of $20N$ is applied	on a body of mass 5 kg rest	ting on a horizontal plane. T	Γhe body gains a kinetic
	energy of 10 joule after i	t moves a distance 2 \emph{m} . The	e frictional force is	
	a) 10 <i>N</i>	b) 15 <i>N</i>	c) 20 <i>N</i>	d) 30 <i>N</i>
304.	, .	ooth inclined plane of 1 in <i>l</i> cobject is stationary relative		on to be imparted to the
	a) $g\sqrt{l^2-1}$	b) $g(l^2-1)$	~	$d)\frac{g}{l^2-1}$
305.		on a smooth inclined plane we second. Another block is drawn the ratio of t_1 : t_2 is b) 2:1	-	
306.		1		
500.	306. A body of mass m rests on horizontal surface. The coefficient of friction between the body and the sur is μ . If the mass is pulled by a force P as shown in the figure, the limiting friction between body and su will be			
	a) μmg	b) $\mu \left[mg + \left(\frac{P}{2} \right) \right]$	c) $\mu \left[mg - \left(\frac{P}{2} \right) \right]$	d) $\mu \left[mg - \left(\frac{\sqrt{3}P}{2} \right) \right]$
307.		acting on a particle of mass stationary. If the force F_1 is b) F_2F_3/mF_1		
308.	A ball of mass 0.2 kg is th	rown vertically upward by and the ball goes up to 2 m	applying a force by hand. If	f the hand moves 0.2 m
	a) 4 N	b) 16 N	c) 20 N	d) 22 N
309.	_	es down on a rough inclined ion is 0.5 and length of the p	=	
	a) 9.82 <i>J</i>	b) 4.94 <i>J</i>	c) 2.45 <i>J</i>	d) 1.96 <i>J</i>
310	Two blocks are in contact	t on a frictionless table. One	e has mass m and other $2m$	A force f is applied on $2m$

as shown in figure. Next the same force F is applied from the right on m. In the two cases respectively, the force of contact between the two blocks will be

b) 1:3

c) 1:2

d) 3:1

311.	A body of mass $m = 3.513$	$3\ kg$ is moving along the	x-axis with a speed of 5.00	ms^{-1} . The magnitude of its
	momentum is recorded as			
	a) $17.565 kg ms^{-1}$		c) $17.57 \ kg \ ms^{-1}$	_
312.	-		= = = = = = = = = = = = = = = = = = =	er block of mass <i>m</i> hanging
			onless pully. The tension ir	the string is
	a) $\frac{m}{M+m}g$	b) $\frac{M}{M+m}g$	c) $\frac{M+m}{a}$ q	$\mathrm{d})\frac{Mm}{M+m}g$
				$M + m^{\circ}$
313.	In the motion of a racket,			4) 14/21-
24.4		b) Linear momentum	c) Force	d) Work
314.	A body of mass 2 kg is moving on the ground comes to rest after some time. The coefficient of kinetic friction between the body and the ground is 0.2. The retardation in the body is			
	_			
215	a) $9.8 m/s^2$	b) $4.73 m/s^2$,
315.				f coefficient of friction 0.5. If
	•	-	e minimum distance it can b	• •
24.6	a) 400 m	b) 40 m	c) 0.40 m	d) 4 m
316.			nce of a force such that its l	
			t. The angle between the fo	
	a) 0°	b) 30°	c) 45°	d) 90°
317.) ms ⁻¹ enters a wooden blo	
			rted by the block on the bu	
	a) 300 N	b) 20 N	c) 400 N	d) 40 N
318.				nected by a spring of spring
			ss horizontal surface. The b	
		ne direction shown in the	e figure. The maximum com	pression of the spring during
	the motion is	7		
	$0.15 \ ms^{-1}$			
		PLUS EDU	CATION	
	71 0000000 2	TLEO2 EDO	CHITOIA	
	a) 0.01 m	b) 0.02 m	c) 0.05 m	d) 0.03 <i>m</i>
319.	•	,	ngle 30° and 60° with the ve	•
	The fixed frictionless inclined planes making an angle 30° and 60° with the vertical are shown in the figure. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with			
	respect to B	1		
	4			
	$\backslash B \rangle$			
	60°			
			2	
	a) $4.9 ms^{-2}$ in vertical dir		b) $4.9 ms^{-2}$ in horizont	al direction
	c) $9.8 ms^{-2}$ in vertical dir		d) Zero	
320.	Newton's third law of mot			-
	a) Angular momentum	b) Energy	c) Mass	d) Momentum
321.	A 500 kg horse pulls a cart of mass 1500 kg along a level road with an acceleration of 1 ms^{-2} . If the			
	coefficient of sliding friction		exerted by the horse in forv	
	a) 3000 <i>N</i>	b) 4000 <i>N</i>	c) 5000 <i>N</i>	d) 6000 <i>N</i>
322.	_		entical springs suspended f	_
		nd the weights fall freely		nts from the rod are such that
	a) 3W will be farthest		b) W will be farthest	
	c) All will be at the same of	distance	d) 2W will be farthest	

323.	A shell is fired from cann	on with a velocity v :	ms ⁻¹ at an angle of θ wit	h the horizontal direction. At the	
	highest point in its path, it explodes into 2 pieces of equal masses. One of the pieces retraces its path to the				
	cannon. The speed of the other piece immediately after the explosion is				
	a) $\sqrt{3/2} v \cos \theta$	b) $v \cos \theta$	c) 2 <i>v</i> cos θ	d) $3v\cos\theta$	
324.	When a horse pulls a wag	gon, the force that ca	uses the horse to move f	orward is the force	
	a) The ground exerts on		b) It exerts on th		
	c) The wagon exerts on i	t	d) It exerts on th	ne wagon	
325.	To avoid slipping while v	valking on ice, one sh	nould take smaller steps	because of the	
	a) Friction of ice is large	-	b) Larger norma		
	c) Friction of ice is small		d) Smaller norm	al reaction	
326.	Three guns are aimed at	the centre of a circle.	. They are mounted on th	ne circle, 120° apart. They fire in a	
	timed sequence, such tha	timed sequence, such that the three bullets collide at the centre and mash into a stationary lump. Two of			
the bullets have identical masses of 4.5 g and speed of v_1 and v_2 . The third bullet			third bullet has a mass of 2.50 g and		
	a speed of 575 ms^{-1}				
	Find the unknown speed	S.			
	a) 200 ms ⁻¹ each		b) 145 ms ⁻¹ and	l 256 ms ⁻¹	
	c) $536 \text{ ms}^{-1} \text{ and } 320 \text{ ms}$	-1	d) None of the a	bove	
327.	A child weighing 25 kg sl	lides down a rope ha	nging from the branch o	f a tall tree. If the force of friction	
	acting against him is $2 N_1$, what is the accelera	tion of the child (Take g	$= 9.8 m/s^2)$	
	a) $22.5 m/s^2$	b) $8 m/s^2$	c) 5 <i>m/s</i> ²	d) $9.72 \ m/s^2$	
328.	A 2 kg mass starts from i	rest on an inclined sn	nooth surface with inclir	ation 30° and length 2 \emph{m} . How much	
	will it travel before comi	ng to rest on a frictio	nal surface with friction	al coefficient of 0.25	
	a) 4 m	b) 6 m	c) 8 m	d) 2 <i>m</i>	
329.	Starting from rest, the tir	ne taken by a body sl	liding down on a rough i	nclined plane at 45° with the	
	horizontal is twice the tir	ne taken to travel on	a smooth plane of same	inclination and same distance. Then	
	the coefficient of kinetic		A .		
	a) 0.25A jet engine works on thea) Conservation of mass	b) 0.33	c) 0.50	d) 0.75	
330.	A jet engine works on the	e principle of	OCWITOM		
	a) Conservation of mass		-,		
	c) Conservation of linear			of angular momentum	
331.			=	ating at t ms ⁻² . The coefficient of	
				eration of the box with respect to the	
	truck is zero. The value o		ms^{-2}		
	a) 4 kg	b) 8 kg	c) 9.78 kg	d) It could be any value	
332.	-			wder charge placed between them.	
	The whole system is at rest on the ground. Suddenly the powder charge explodes and masses are pushed				
	apart. The mass m_1 travels a distance s_1 and stops. If the coefficients of friction between the balls and				
	ground are same, the ma	ss m_2 stops after trav	veling the distance		
	a) $s_2 = \frac{m_1}{m_2} s_1$	b) $s_2 = \frac{m_2}{m_1} s_1$	c) $s_2 = \frac{m_1^2}{m_2^2} s_1$	d) $s_2 = \frac{m_2^2}{m_1^2} s_1$	
	m_2	m_1	$m_2^{2} = m_2^{2}$	$m_1^{32} - m_1^{231}$	
333.	In the above question, th		ss m is		
	a) $\frac{F}{-}$	b) $\frac{F-T}{m}$	c) $\frac{F+T}{m}$	d) $\frac{F}{M}$	
	a) $\frac{r}{m}$	****	110	IVI	
334.			_	zontal. As the angle α of the incline is	
	increased, the block starts slipping when the angle of inclination becomes $ heta.$ The coefficient of static				
friction between the block and the surface of the incline plane is or A body starts sliding down			oody starts sliding down at an angle		
	heta to horizontal. Then coe	fficient of friction eq	ual to		

c) $\tan \theta$

d) Independent of θ

b) $\cos \theta$

a) $\sin \theta$

335. A given object takes n times more time to slide down a 45° rough inclined plane as it takes so slide down a perfectly smooth 45° incline. The coefficient of kinetic friction between the object and the incline is

$$a) \frac{1}{1 - n^2}$$

b)
$$1 - \frac{1}{n^2}$$

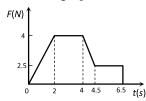
c)
$$\sqrt{1-\frac{1}{n^2}}$$

$$d)\sqrt{\frac{1}{1-n^2}}$$

336. An iron nail is dropped from a height h from the level of a sand bed. If it penetrates through a distance x in the sand before coming to rest, then average force exerted by the sand on nail is

a)
$$mg\left(\frac{h}{x}+1\right)$$

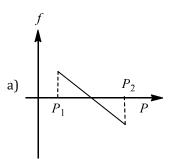
b)
$$mg\left(\frac{x}{h}+1\right)$$

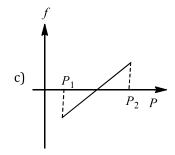

c)
$$mg\left(\frac{h}{x}-1\right)$$

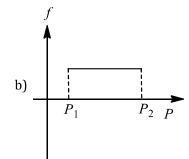
d)
$$mg\left(\frac{x}{h}-1\right)$$

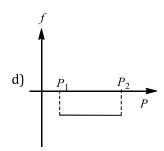
- 337. A block compartment containing gas is moving with some acceleration in horizontal direction. Neglect effect of gravity. Then the pressure in the compartment is
 - a) Same everywhere
- b) Lower in front side
- c) Lower in rear side
- d) Lower in upper side
- 338. The average resisting force that must act on a 5 kg mass to reduce its speed from 65 cm/s to 15 cm/s in 0.2s is
 - a) 12.5 N
- b) 25 N

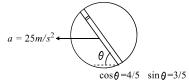
c) 50 N


- d) 100 N
- 339. A body of 2 kg has an initial speed 5 ms^{-1} . A force acts on it for some time in the direction of motion. The force time graph is shown in figure. The final speed of the body




- a) $9.25 \, ms^{-1}$
- b) $5 ms^{-1}$
- c) 14.25 ms⁻¹
- d) $4.25 \, ms^{-1}$
- 340. A block of mass m is on an inclined plane of angle θ . The coefficient of friction between the block and the plane is μ and $\tan \theta > \mu$. The block is held stationary by applying a force E parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from $P_1 = mg(\sin \theta \mu \cos \theta)$ to


 $P_2 = mg(\sin \theta + \mu \cos \theta)$, the frictional force f versus P graph will look like

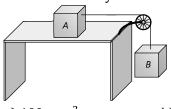


341. A body is moving along a rough horizontal surfar after travelling 9 <i>m</i> , then the coefficient of slidin	_	n/s. If the body comes to rest
a) 0.4 b) 0.2	c) 0.6	d) 0.8
342. In the above ques., the height to which the lift ta	,	,
a) 3.6 meters b) 8 meters	c) 1.8 meters	d) 36 meters
343. Sand is being dropped on a conveyor belt at the	•	
moving with a constant velocity of $v m/s$ will be	<u> </u>	
a) $\frac{Mv}{2}$ newton b) Zero	c) <i>Mv</i> newton	d) 2 <i>Mv</i> newton
2 10 11 00 11	,	
344. 300 <i>joule</i> of work is done in sliding up a 2 kg by	_	
value of acceleration due to gravity 'g' to be 10	c) 300 /	
a) 100 <i>J</i> b) 200 <i>J</i>	, ,	d) Zero
345. A mass of 10 kg is suspended from a string bala an angle of 60° with the vertical. The new reading		rizontai string so that it makes
a) 20 kg-wt b) 10 kg-wt	of the balance is $c) 10\sqrt{3} \text{ kg-wt}$	d) $20\sqrt{3}$ kg-wt
, ,	, ,	, ,
346. A block of mass $\sqrt{3}$ kg resting on a horizontal su		
If coefficient of friction between the block be $\frac{1}{2\sqrt{100}}$	$\frac{1}{\sqrt{3}}$, what can be the maximum	value of force F so that block
does not start moving? (Take $g = 10 \text{ ms}^{-2}$)		
\setminus F		
$\frac{60^{\circ}}{\sqrt{3} \text{ kg}}$		
a) 20 N b) 10 N	c) 12N	d) 15 N
347. A force of 1200 N acts on a 0.5 kg steel ball as re		
opposite to the initial velocity of $14~\mathrm{ms}^{-1}$ then t		
a) 24 ms^{-1} b) 35 ms^{-1}	c) 12 ms ⁻¹	d) 46 ms ⁻¹
348. A block of weight 5N is pushed against a vertical		
the wall and block is 0.6. The magnitude of the f	force exerted by the wall on t	he block is
→		
12 N		
a) 12 N b) 5 N	c) 7.2 N	d) 13 N
349. The one -rupee coins are put on top of each oth	er on a table. Each coin has a	mass m . Which of the
following statements is not true		
The force on the 6^{th} (counted from the botto	m) due to all the coins on its	top is equal to $4 mg$
a) (downwards)		
b) The force on the 6^{th} coin due to 7^{th} coin is $4r$	ng (downwards)	
c) The reaction of the 6^{th} coin on the 7^{th} coin is		
d) The total force on the 10^{th} coin is 9 mg (dow		
350. A stationary bomb explodes into three pieces. O	•	s with a velocity of $8 ms^{-1}$ at
right angles to the other piece of mass $1 kg$ mov	•	
piece is $0.5 kg$, then its velocity is	3	
a) 10 ms^{-1} b) 20 ms^{-1}	c) $30 ms^{-1}$	d) $40 \ ms^{-1}$
351. Newton's second and third laws of motion lead		•
a) Linear momentum b) Angular momentu		d) Kinetic energy
352. A chain lies on a rough horizontal table. It starts		,
of the table. The coefficient of static friction bet	•	

a) $\frac{1}{2}$ b) $\frac{1}{4}$	
a) $\frac{1}{a}$ b) $\frac{1}{a}$ c) $\frac{1}{a}$	
· · · · · · · · · · · · · · · · · · ·	

- 353. The minimum force required to start pushing a body up a rough (frictional coefficient μ) inclined plane is F_1 while the minimum force needed to prevent it from sliding down is F_2 . If the inclined plane makes an angle θ from the horizontal such that $\tan \theta = 2\mu$, then the ratio $\frac{F_1}{F_2}$ is
 - a) 4 b) 1 c) 2 d) 3
- 354. A body of mass 2 kg is kept by pressing to a vertical wall by a force of 100 N. The coefficient of friction between wall and body is 0.3. Then the frictional force is equal to
 - a) 6 N b) 20 N c) 600 N d) 700 N
- 355. A circular disc with a groove along its diameter is placed horizontally. A block of mass 1kg is placed as shown. The co-efficient of friction between the block and all surfaces of groove in contact is $\mu=2/5$. The disc has an acceleration of 25 m/s^2 . Find the acceleration of the block with respect to disc

- a) $10 \, m/s^2$
- b) $5 m/s^2$
- c) $20 \, m/s^2$
- d) $1 m/s^2$
- 356. A solid disc of mass M is just held in air horizontal by throwing 40 stones per sec vertically upwards to strike the disc each with a velocity 6 ms⁻¹. If the mass of each stone is 0.05 kg. What is the mass of the disc (g = 10 ms^{-2})
 - a) 1.2 kg
- b) 0.5 kg
- c) 20 kg
- d) 3 kg
- 357. A block of mass $\sqrt{3}$ kg rests on a horizontal frictionless *XY* plane. What would be the acceleration of the block if it is subjected to two forces as shown in figure?

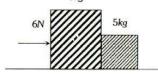


a) 2.5 ms^{-2}

b) 5 ms⁻² along *Y*-axis

c) 10 ms^{-2} along *X*-axis

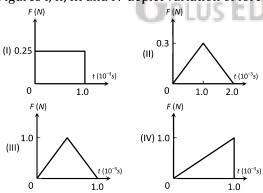
- d) 15 ms^{-2} along *Y*-axis
- 358. Two forces of magnitude F have a resultant of the same magnitude F. The angle between the two forces is a) 45° b) 120° c) 150° d) 60°
- 359. A block *A* of mass 7 kg is placed on a frictionless table. A thread tied to it passes over a frictionless pulley and carries a body *B* of mass 3 kg at the other end. The acceleration of the system is (given $g = 10 \text{ ms}^{-2}$)


- a) $100 \, ms^{-2}$
- b) $3 ms^{-2}$
- c) 10 ms^{-2}
- d) $30 \, ms^{-2}$
- 360. Two blocks of masses 1 kg and 2 kg are connected by a metal wire going over a smooth pulley as shown in figure. The breaking stress of the metal is 2×10^9 Nm⁻². What should be the minimum radius of the wire used if it is not to break? Take g = 10 ms⁻²

- a) 4.6×10^{-5} m
- b) 4.6×10^{-6} m
- c) 2.5×10^{-6} m
- d) 2.5×10^{-5} m
- 361. When forces F_1 , F_2 , F_3 are acting on a particle of mass m such that F_2 and F_3 are naturally perpendicular, then the particle remains stationary. If the force F_1 is now removed then the acceleration of the particle is
 - a) F_1/m

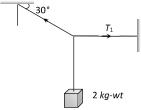
- b) F_2F_3/mF_1
- c) $(F_2 F_3)/m$
- d) F_2/m
- 362. The minimum force required to move a body up an inclined plane is three times the minimum force required to prevent it from sliding down the plane. If the coefficient of friction between the body and the inclined plane is $\frac{1}{2\sqrt{3}}$, the angle of the inclined plane is

- d) 15°
- 363. Two block of masses 7 kg and 5 kg are placed in contact with each other on a smooth surface. If a force of 6 N is applied on the heavier mass, the force on the lighter mass is



a) 3.5 N

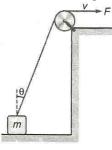
b) 2.5 N


c) 7 N

- 364. A particle moves in a circular path with decreasing speed. Choose the correct statement
 - a) Angular momentum remains constant
 - b) Acceleration \vec{a} is towards the centre
 - c) Particle moves in a spiral path with decreasing radius
 - d) The direction of angular momentum remains constant
- 365. Figures I, II, III and IV depict variation of force with time

The impulse is highest in the case of situations depicted. Figure

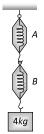
- a) I and II
- b) III and I
- c) III and IV
- d) IV only
- 366. A body of weight 2 kg is suspended as shown in the figure. The tension T_1 in the horizontal string (in kg wt) is



a) $2/\sqrt{3}$

- b) $\sqrt{3}/2$
- c) $2\sqrt{3}$

d) 2


367. A block is dragged on a smooth horizontal plane with the help of a light rope which moves with a velocity v as shown in figure. The horizontal velocity of the block is

a) v

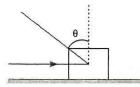
- b) $v \sin \theta$

- 368. A block of mass 4 kg is suspended through two light spring balances A and B. Then A and B, Then A and B will read respectively

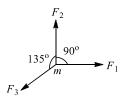
- a) 4 kg and zero kg
- b) Zero kg and 4kg
- c) 4 *kg* and 4 *kg*
- d) 2 kg and 2 kg
- 369. A cold soft drink is kept on the balance. When the cap is open, then the weight
 - a) Increases

b) Decreases

c) First increases then decreases


- d) Remains same
- 370. An ice tube is kept on an inclined plane of angle 30°. Coefficient of kinetic friction between block and inclined plane is $\frac{1}{\sqrt{2}}$. What is the acceleration of block?
 - a) Zero

- b) 2 ms⁻²
- c) 1.5 ms^{-2}
- d) 5 ms^{-2}
- 371. A man weighs 80 kg. He stands on a weighing scale in a lift which is moving upwards with a uniform acceleration of $5m/s^2$. What would be the reading on the scale. $(g = 10 m/s^2)$
 - a) 400 N
- b) 800 N
- c) 1200 N
- d) Zero
- 372. A 20 kg block is initially at rest on a rough horizontal surface. A horizontal force of 75 N is required set the block in motion. After it is in motion, a horizontal force of 60 N is required to keep the block moving with constant speed. The coefficient of static friction is
 - a) 0.38


b) 0.44

c) 0.52

- 373. A block of mass m lying on a rough horizontal plane is acted upon by a horizontal force P and another force Q inclined at an angle θ to the vertical. The block will remain in equilibrium if the coefficient of friction between it and the surface is

- b) $\frac{P\cos\theta + Q}{mg Q\sin\theta}$ c) $\frac{P + Q\cos\theta}{mg + Q\sin\theta}$ d) $\frac{P\sin\theta Q}{mg Q\cos\theta}$
- 374. The mass of ship is 2×10^7 kg. On applying a force of 25×10^5 N, it is displaced through 25 m. After the displacement, the velocity acquired by the ship will be
 - a) $12.5 \, m/s$
- b) 5 m/s
- c) $3.7 \, m/s$
- d) $2.5 \, m/s$
- 375. When a force F acts on a body of mass m, the acceleration produced in the body is a. If three equal forces $F_1 = F_2 = F_3 = F$ act on the same body as shown in figure, the acceleration produced is

- a) $(\sqrt{2} 1)a$
- b) $(\sqrt{2} + 1)a$
- c) $\sqrt{2}a$

d) a

376. A block of 1 kg is stopped against a wall by applying a force F perpendicular to the wall. If $\mu = 0.2$ then minimum value of F will be

- a) 980 N
- b) 49 N

c) 98 N

377. A train is moving with velocity $20 \, m/sec$. On this dust is falling at the rate of $50 \, kg/minute$. The extra force required to move this train with constant velocity will be

- b) 1000 N

378. Two masses $m_1=5~{
m kg}$ and $m_2=4.8~{
m kg}$ tried to a string are hanging over a light frictionless pulley. What is the acceleration of the masses when lift is free to move? $(g = 9.8 \text{ ms}^{-2})$

- a) 0.2 ms^{-2}
- b) 9.8 ms^{-2}
- c) 5 ms^{-2}

379. In the figure, the ball A is released from rest when the spring is at its natural length. For the block B of mass M to leave contact with the ground at same stage, the minimum mass of A must be

GPLUS EDUCATION

- a) 2M
- b) M
- c) $\frac{M}{2}$
- d) A function of *M* and the force constant of the spring

380. A 1000 kg lift is supported by a cable that can support 2000 kg. The shortest distance in which the lift can be stopped when it is descending with a speed of $2.5~\text{ms}^{-1}$ is [Take $g=10~\text{ms}^{-2}$]

a) 1 m

b) 2 m

381. A box is placed on an inclined plane and has to be pushed down. The angle of inclination is

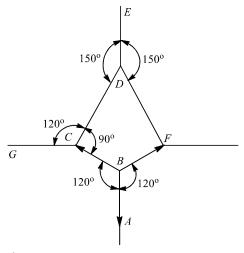
a) Equal to angle of friction

b) More than angle of friction

c) Equal to angle of repose

d) Less than angle of repose

382. A rocket with a lift-off mass 10^5 kg is blasted upward with an initial acceleration of 5 ms⁻². If g = 10 ms⁻², then the initial thrust of the blast is


- a) $1.5 \times 10^2 \text{ N}$
- b) $1.5 \times 10^3 \text{ N}$
- c) $1.5 \times 10^5 \text{ N}$
- d) 1.5×10^6 N

383. The maximum speed that can be achieved without skidding by a car on a circular unbanked road of radius R and coefficient of static friction μ , is

a) μRg

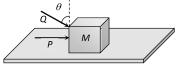
- b) Rg_3/μ
- d) $\sqrt{\mu Rg}$

384. A force of 5 N acts on a body of weight 9.8 N . What is the acceleration produced in m/\sec^2	
a) 49.00 b) 5.00 c) 1.46 d) 0.51	
385. A player caught a cricket ball of mass 150 gm moving at the rate of 20 m/sec . If the catching process b completed in 0.1 sec the force of the blow exerted by the ball on the hands of player is	ie
a) 0.3 N b) 30 N c) 300 N d) 3000 N	
386. A disc of mass 10 g is kept floating horizontally in air by firing bullets, each of mass 5g, with the same	
velocity at the same rate of 10 bullets per second. The bullets rebound with the same speed in positive)
direction. The velocity of each bullet at the time of impact is a) 196 cms^{-1} b) 98 cms^{-1} c) 49 cms^{-1} d) 392 cms^{-1}	
	
387. A bullet of mass $10~g$ moving with $300~m/s$ hits a block of ice of mass $5~kg$ and drops dead. The velocities is	гу ог
a) 50 cm/s b) 60 cm/s c) 40 cm/s d) 30 cm/s	
388. A particle is moving with a constant speed along a straight line path. A force is not required to	
a) Increase its speed b) Decrease the momentum	
c) Change in direction d) Keep it moving with uniform velocity	
389. The coefficient of static friction, μ_s , between block A of mass 2 kg and the table as shown in the figure	is
0.2. What would be the maximum mass value of block B so that the two blocks do not move? The string	g
and the pulley are assumed to be smooth and massless $(g = 10 \text{ m/s}^2)$	
a) $2.0 \ kg$ b) $4.0 \ kg$ c) $0.2 \ kg$ d) $0.4 \ kg$	
390. A coin is placed on a horizontal platform which undergoes vertical simple harmonic motion of angular	•
frequency $\boldsymbol{\omega}$. The amplitude of oscillation is gradually increased. The coin will leave contact with the	
platform for the first time	
a) At the mean position of the platform b) For an amplitude of g/ω^2	
c) For an amplitude of g^2/ω^2 d) At the highest position of the platform	
391. The coefficient of static friction μ_s between block A of mass 2 kg and the table as shown in the figure is	s 0.2.
What would be the maximum mass value of block B so that the two blocks do not move? The string an	d
the pully are assumed to be smooth and massless $(g = 10 \text{ ms}^{-2})$	
a) 2.0 kg b) 4.0 kg c) 0.2 kg d) 0.4 kg	
392. The adjacent figure is the part of a horizontally stretched net. Section AB is stretched with a force of 10	0 N.
The tension in the section BC and BF are	

a) 10 N, 11N

b) 10 N, 6 N

c) 10 N, 10 N


- d) Can't be calculated due to insufficient data
- 393. A stick of 1 m is moving with velocity of $2.7 \times 10^8 \ ms^{-1}$. What is the apparent length of the stick ($c = 3 \times 10^8 \ ms^{-1}$). $10^8 \, ms^{-1}$)

a) 10 m

b) 0.22 m

c) 0.44 m

394. A block of mass m lying on a rough horizontal plane is acted upon by a horizontal force P and another force Q inclined at an angle θ to the vertical. The block will remain in equilibrium, if the coefficient of friction between it and the surface is

a) $\frac{(P+Q\sin\theta)}{(mg+Q\cos\theta)}$ b) $\frac{(P\cos\theta+Q)}{(mg-Q\sin\theta)}$ c) $\frac{(P+Q\cos\theta)}{(mg+Q\sin\theta)}$ d) $\frac{(P\sin\theta-Q)}{(mg-Q\cos\theta)}$ 395. The time in which a force of 2 N produces a change in momentum of $0.4 kg - ms^{-1}$ in the body is

a) 0.2 s

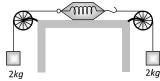
b) 0.02 s

c) 0.5 s

396. A ball of mass 0.2 kg is thrown normally against a wall with a speed of 15 ms⁻¹. The impulse of the force by the ball on the wall is

a) 0.35 Ns

b) 0.7 Ns


c) 7 Ns

d) 70 Ns

397. The linear momentum of a particle varies with time t as $p = a + bt + ct^2$

Which of the following statements is correct?

- a) Force varies with time in a quadratic manner
- b) Force is time-dependent
- c) The velocity of the particle is proportional to time
- d) The displacement of the particle is proportional to t
- 398. As shown in the figure, two equal masses each of 2 kg are suspended from a spring balance. The reading of the spring balance will be

a) Zero

b) 2 kg

c) 4 kg

d) Between zero and 2 kg

399. Physical independence of force is consequence of

a) Third law of motion

b) Second law of motion

c) First law of motion

d) All of the above

400. A conveyor belt is moving at a constant speed of 2 m/s. A box is gently dropped on it. The coefficient of friction between them is $\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it, taking $g = 10 \text{ ms}^{-2}$, is

a) Zero

b) 0.4 m

c) 12 m

d) 0.6 m

401. Steady rain, giving 5 mm an hour, turns suddenly into a downpour giving 20 mm an hour and the speed of the rain drops falling vertically on to a flat roof simultaneously doubles. The pressure exerted by the falling rain on the roof is raised by a factor of

a) 4

b) 8

c) 16

d) 32

402. A body of mass 4 kg is accelerated upon by a constant force, travel a distance of 5 m in the first second and a distance of 2 m in the third second. The force acting on the body is

a) 2 N

b) 4 N

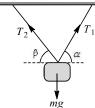
c) 6 N

d) 8 N

403. Two particle of equal mass are connected to a rope AB of negligible mass, such that one is at end A and the other dividing the length of the rope in the ratio 1:2 from *B*. The rope is rotated about end *B* in a horizontal plane. Ratio of the tension in the smaller part to the other is (ignore effect of gravity)

c) 1:2

404. An open carriage in a goods train is moving with a uniform velocity of 10 ms $^{-1}$. If the rain adds water with zero velocity at the rate of 5 kgs⁻¹, then the additional force applied by the engine to maintain the same velocity of the train is


a) 0.5 N

b) 2.0 N

c) 50 N

d) 25 N

405. A body of mass m is suspended by two strings making angle α and β with the horizontal as shown in figure. Tensions in the two strings are

c) $T_1 = \frac{mg\cos\beta}{\sin(\alpha+\beta)}$; $T_2 = \frac{mg\cos\alpha}{\sin(\alpha+\beta)}$

d) None of the above

406. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button one control panel. The lift starts moving upwards with an acceleration 1.0 m/s^2 . If $g = 10 ms^{-2}$, the tension in the supporting cable is

a) 1200 N

b) 8600 N

c) 9680 N

d) 11000 N

407. A stationary body of mass 3 kg explodes into three equal pieces. Two of the pieces fly off in two mutually perpendicular directions, one with a velocity of $3\hat{\imath} ms^{-1}$ and the other with a velocity of $4\hat{\jmath} ms^{-1}$. If the explosion occurs in 10^{-4} s, the average force acting on the third piece in newton is

a) $(3\hat{i} + 4\hat{j}) \times 10^{-4}$

b) $(3\hat{i} - 4\hat{j}) \times 10^{-4}$

c) $(3\hat{i} + 4\hat{j}) \times 10^4$

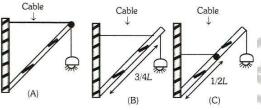
408. Three solids of masses m_1 , m_2 and m_3 are connected with weightless string in succession and are placed on a frictionless table. If the mass m_3 is dragged with a force T, the tension in the string between m_2 and

a) $\frac{m_2}{m_1 + m_2 + m_3} T$ b) $\frac{m_3}{m_1 + m_2 + m_3} T$ c) $\frac{m_1 + m_2}{m_1 + m_2 + m_3} T$ d) $\frac{m_2 + m_3}{m_1 + m_2 + m_3} T$

409. If the surface is smooth, the acceleration of the block m_2 will be

a)
$$\frac{m_2 g}{4m_1 + m_2}$$

b)
$$\frac{2m_2g}{4m_1 + m_2}$$


c)
$$\frac{2m_1g}{m_1 + 4m_2}$$

$$\mathrm{d)}\,\frac{2m_1\mathrm{g}}{m_1+m_2}$$

- 410. A block of mass 2 kg is placed on the floor. The coefficient of static friction is 0.4. If a force of 2.8 N is applied on the block parallel to floor, the force of friction between the block and floor (Taking g = 10 ms^{-2}) is
 - a) 2.8 N
- b) 8 N

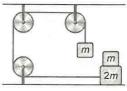
c) 2 N

- d) Zero
- 411. A point mass m is moving along inclined plane with acceleration a with respect to smooth triangular block. The triangular block is moving horizontally with acceleration a_0 . The value of a is
 - a) $g \sin \theta + a_0 \cos \theta$
- b) $g \sin \theta a_0 \cos \theta$
- c) $g \cos \theta a_0 \sin \theta$
- d) None of these
- 412. If a street light of mass *M* is suspended from the end of a uniform rod of length *L* in different possible patterns as shown in figure, then

- a) Pattern A is sturdier
- c) Pattern C is sturdier

- b) Pattern B is sturdier
- d) All will have same sturdiness
- 413. A body of mass 5kg rests on a rough horizontal surface of coefficient of friction 0.2. The body is pulled through a distance of 10m by a horizontal force of 25 N. The kinetic energy acquired by it is $(g = 10 \text{ ms}^2)$
 - a) 330 /
- b) 150 *I*
- c) 100 J

- d) 50 I
- 414. A ball of mass 0.2 kg rests on a vertical post of height 5 m. A bullet of mass 0.01 kg, travelling with a velocity v m/s in a horizontal direction, hits the centre of the ball. After the collision, the ball and bullet travel independently. The ball hits the ground at a distance of 20 m and the bullet at ball hits the ground at a distance of 100 m from the foot of the post. The initial velocity v of the bullet is

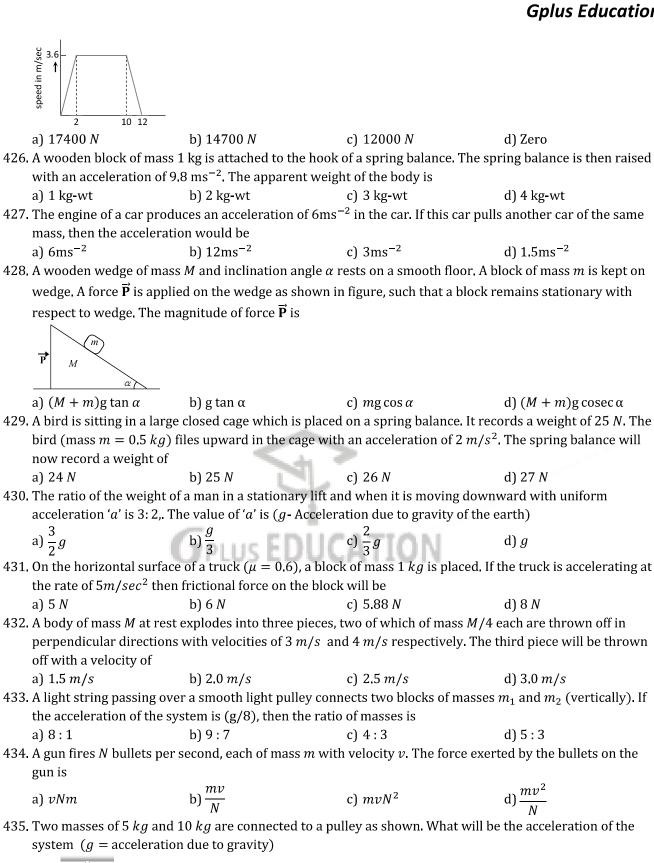

- a) 250 m/s
- b) $250\sqrt{2} \text{ m/s}$
- c) 400 m/s
- d) 500 m/s
- 415. A block of mass 5 kg is moving horizontally at a speed of 1.5 m/s. A perpendicular force of 5N acts on it for 4 sec. What will be the distance of the block from the point where the force started acting
 - a) 10 m
- b) 8 m

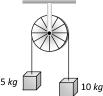
c) 6 m

- 416. A spring balance and a physical balance are kept in a lift. In these balances equal masses are placed. If now the lift starts moving upwards with constant acceleration, then
 - a) The reading of spring balance will increase and the equilibrium position of the physical balance will disturb
 - b) The reading of spring balance will remain unchanged and physical balance will remain in equilibrium
 - c) The reading of spring balance will decrease and physical balance will remain in equilibrium
 - d) The reading of spring balance will increase and the physical balance will remain in equilibrium

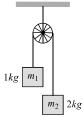
417.	417. A wooden box of mass 8 kg slides down an inclined plane of inclination 30° to the horizontal with a constant acceleration of $0.4~\rm ms^{-2}$. What is the force of friction between the box and inclined plane? $10~\rm ms^{-2}$]				
	-	13 = 4 0 34	\	N 07 0 W	
	a) 36.8 N	b) 76.8 N	c) 65.6 N	d) 97.8 N	
418.		-	a rope upto 2 metres. If co	-	
			$9.8m/\text{sec}^2$, then work don		
	a) 294 joules	b) 315 joules	c) 588 joules	d) 197 joules	
419.		_	ept on an inclined plane. Tl		
		inclination $ heta$ of this incline	d plane from the horizontal	plane is gradually	
	increased from 0°. Then				
	_	vill start sliding down the p			
			ertain $ heta$ and then it will top		
	=	-	lane and continue to do so	-	
	d) At $\theta = 60^{\circ}$, the block we certain θ	vill start sliding down the p	lane and on further increas	ing $ heta$, it will topple at	
420.	A monkey climbs up and	another monkey climbs dov	wn a rope hanging from a tı	ee with same uniform	
	acceleration separately. If	f the respective masses of n	nonkeys are in the ratio 2:	3, the common	
	acceleration must be				
	a) <i>g</i> /5	b) 6 <i>g</i>	c) g/2	d) <i>g</i>	
421.	The resultant of two force	es acting at an angle of 120°	is 10 kg-wt and is perpend	licular to one of the forces.	
	That force is				
	a) $\frac{10}{\sqrt{3}}$ kg-wt	b) 10 kg-wt	c) $20\sqrt{3}$ kg-wt	d) 10 /2 leat	
	$\sqrt{3}$ kg-wt	the s	c) 20\(\gamma \) kg-wt	u) 10γ3 kg-wt	
422.		The state of the s	ents of masses 1 kg, 2 kg ar		
				ively. If the m kg piece flies	
	off with speed of 6.5 ms ⁻²	¹ , the total mass of the shel	l must be		
	a) 4 kg	b) 5 kg	c) 3.5 kg	d) 4.5 kg	
423.	Refer to the system show	n in figure. The acceleration	n of the masses is		
	T ₂ †				
	3 kg B T ₂				
	· _ 7.1				
	1 kg C A 5 kg				
	a) $\frac{g}{3}$	b) $\frac{g}{6}$	c) $\frac{g}{g}$	d) $\frac{g}{12}$	
	5	U	,	- L	
424.	Mass of 3 kg descending v	vertically downward suppo	rts a mass of 2 kg by means	s the end of 5 s, the string	

424. Mass of 3 kg descending vertically downward supports a mass of 2 kg by means the end of 5 s, the string breaks. How much higher the 2 kg mass will go further?


a) 4.9 m


b) 9.8 m

c) 19.6 m


d) 2.45 m

425. A lift is going up. The total mass of the lift and the passenger is 1500 kg the variation in the speed of the lift is as given in the graph. The tension in the rope pulling the lift at $t = 11^{th}sec$ will be

	a) <i>g</i>	b) $\frac{g}{2}$	c) $\frac{g}{3}$	d) $\frac{g}{4}$
436.	A block <i>B</i> is pushed mome	4	surface with an initial velo	7
_			B will come to rest after a ti	
		,		
	$B \longrightarrow V$			
	a) $V/(g\mu)$	b) <i>gμ/V</i>	c) <i>g/V</i>	d) <i>V/g</i>
437.			/sec. To stop it in $\frac{1}{10}$ sec, th	
	opposite direction is		10	
	a) 5000 <i>N</i>	b) 500 <i>N</i>	c) 50 N	d) 1000 <i>N</i>
438.	The pulley and strings sho	own in the figure are smoot	th and of negligible mass. F	or the system to remain in
	equilibrium, the angle θ sl	hould be		
	θ v2m m			
	a) 0°	b) 30°	c) 45°	d) 60°
439.	A gun fires N bullets per s	second, each of mass m with	h velocity \emph{v} . The force exer	ted by the bullets on the
	gun is			
	a) <i>vN m</i>	b) $\frac{mv}{N}$	c) mvN^2	d) $\frac{mv^2}{N}$
440.	A block of mass 1 kg is at	rest on a horizontal table. I	The coefficient of static frict	tion between the block and
	the table is 0.5. If $g = 10m$	10^{-2} , then the magnitude o	f the force acting upwards a	at an angle of 60° from the
	horizontal that will just st	art the block moving is		
	a) 5 N	b) 5.36 N	c) 74.6 N	d) 10 N
441.		by a thread. It is (i) lifted u	up with an acceleration 4.9	m/s^2 (ii) lowered with ar
	a) 3:1	b) 1:3	c) 1:2	d) 2: 1
442.	A satellite in force-free sp	ace sweeps stationary inte	rplanetary dust at a rate d <i>l</i>	$M/dt = \alpha v$ where M is the
	mass, v is the velocity of t		tant. What is the deaccelera	tion of the satellite
	a) $-2\alpha v^2/M$	b) $-\alpha v^2/M$	c) $+\alpha v^2/M$	d) $-\alpha v^2$
443.	-	-	have their velocities in the	e ratio 2:1. The ratio of
	their nuclear sizes will be			
	a) $2^{1/3}$: 1	b) 1: 3 ^{1/2}	c) $3^{1/2}$: 1	d) 1: 2 ^{1/3}
444.	•	cular path of radius $10m$ and t is not to slip from the sur	In the coefficient of friction face $(a = 9.8 \text{ m/s}^2)$	is 0.5. What should be its
	a) 5	b) 10	c) 0.1	d) 0.7
445.	•	owards by a cord whose bra	aking strength is four times	•
	= =	he sphere can move up wit		· ·
	a) <i>g</i>	b) 3 <i>g</i>	c) 2 <i>g</i>	d) 4 <i>g</i>
446.	Two masses $m_1 = 1 kg$ ar	$1 \cdot m_2 = 2kg$ are connected	d by a light inextensible str	ing and suspended by
	means of a weightless pul		Assuming that both the ma	

	20	
a)	0	m

b) $\frac{40}{9}$ m

c) $\frac{2}{3}$ m

d) $\frac{1}{2}$ m

447. A shell of mass 10 kg is moving with a velocity of 10 ms⁻¹ when it blasts and forms two parts of mass 9 kg and 1 kg respectively. If the 1st mass is stationary, the velocity of the 2nd is

- a) 1 ms^{-1}
- b) 10 ms^{-1}
- c) 100 ms^{-1}

d) 1000 ms^{-1}

448. The mass of a lift is 2000 kg. When the tension in the supporting cable is 28000 N, then its acceleration is

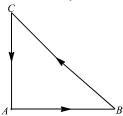
- a) $30 ms^{-2}$ downwards b) $4 ms^{-2}$ upwards
- c) $4 ms^{-2}$ downwards

d) $14 ms^{-2}$ upwards

449. When a bus suddenly takes a turn, the passengers are thrown outwards because of

a) Inertia of direction

b) Acceleration of motion


c) Speed of motion

d) Both (b) and (c)

450. A shell initially at rest explodes into two pieces of equal mass, the two pieces will

- a) Move with different velocities in different directions
- b) Move with the same velocity in opposite directions
- c) Move with the same velocity in the same directions
- d) Be at rest

451. Three forces start acting simultaneously on a particle moving with velocity v. These forces are represented in magnitude and direction by the three sides of a triangle ABC (as shown). The particle will now move with velocity

GPLUS EDUCATION

a) Less than **v**

- b) Greater than v
- c) v in the direction of largest force BC
- d) v remaining unchanged
- 452. A man wants to slide down a rope. The breaking load for the rope $\frac{2}{3}$ rd of the weight of the man. With what minimum acceleration should fireman slide down?

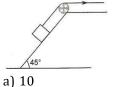
453. A blumb bob is hung from the ceiling of a train compartment. The train moves on an inclined track of inclination 30° with horizontal. Acceleration of train up the plane is a = 9/2. The angle which the string supporting the bob makes with normal to the ceiling in equilibrium is

a) 30°

- b) $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$ c) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$
- d) $tan^{-1}(2)$

454. A lift is moving upwards with a uniform velocity v in which a block of mass m is lying. The frictional force offered by the block, when coefficient of the frictional is μ , will be

b) *mg*


d) $2\mu mg$

455. A shell of mass 10 kg is moving with a velocity of 10 ms^{-1} when it blasts and forms two parts of mass 9 kg and 1 kg respectively. If the 1^{st} mass is stationary, the velocity of the 2^{nd} is

- a) 1 m/s
- b) $10 \, m/s$
- c) $100 \, m/s$
- d) $1000 \, m/s$

456.			cket is initially $0.1 kg/sec$. cket is $2 kg$, then the accele	
	a) 5	b) 5.2	c) 2.5	d) 25
457			get. Each bullet weighs 150	
107	-	necessary to hold the gun	=	gnis and has a speed of
	a) 800 <i>N</i>	b) 1000 <i>N</i>	c) 1200 N	d) 2400 <i>N</i>
458.			prizontal rough plane ($\mu = 0$	*
	a) 0.98 N	b) 0.49 N	c) 9.8 N	d) 4.9 N
459.	An explosion blows a rock $1 kg$ first part moving with the third part files off with	x into three parts. Two part h a velocity of $12 ms^{-1}$ and a velocity of $4 ms^{-1}$, its m	is go off at right angles to each $2 kg$ second part moving hass would be	ach other. These two are, with a velocity of $8 ms^{-1}$. If
	a) 5 <i>kg</i>	b) 7 <i>kg</i>	c) 17 <i>kg</i>	d) 3 <i>kg</i>
460.			ept on an inclined plane. Th	
	increased from 0° . Then,	nclination θ of this inclined ill start sliding down the pl	d plane from the horizontal	plane is gradually
	•	•	to certain θ and then it will	topple
	c) At $\theta = 60^{\circ}$ the block w	ill start sliding down the n	lane and continue to do so a	at higher angles
	At $\theta = 60^\circ$, the block w	ill start sliding down the p	lane and on further increas	ing θ, it will topple at
	certain θ			
461.	A block of mass m is resting	ng on a smooth horizontal :	surface. One end of a unifor	m rope of mass $(m/3)$ is
	tension in the middle of the		irection by applying a force	e F at the other end. The
			4	-
	a) $\frac{8}{7}$ F	b) $\frac{1}{7}$ <i>F</i>	c) $\frac{1}{8}$ <i>F</i>	d) $\frac{7}{8}$ F
462.	/	/	U	d) $\frac{7}{8}$ <i>F</i> tensible string passed over
462.	Two masses m_1 and m_2 (r	/	massless flexible and inex	tensible string passed over
462.	Two masses m_1 and m_2 (m_1) massless and frictionless	$m_1 > m_2$) are connected by pulley. The acceleration of	massless flexible and inex centre of mass is	U
	Two masses m_1 and m_2 (r) massless and frictionless parameters a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2 g$	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$	we massless flexible and inexpected from the contraction of mass is $c) \frac{m_1 + m_2}{m_1 - m_2} g$	tensible string passed over d) Zero
	Two masses m_1 and m_2 (m_1 massless and frictionless parameters) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two forces	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the firs	massless flexible and inex centre of mass is	tensible string passed over d) Zero
	Two masses m_1 and m_2 (r massless and frictionless r a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two forces the angle between the two	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ as $3P$ and $2P$ is R . If the first of forces is	massless flexible and inexpectation of mass is c) $\frac{m_1 + m_2}{m_1 - m_2} g$ t force is doubled then the	tensible string passed over d) Zero resultant is also doubled.
463.	Two masses m_1 and m_2 (r massless and frictionless r a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the two a) 60°	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first oforces is b) 120°	massless flexible and inexpectation of mass is $c) \frac{m_1 + m_2}{m_1 - m_2} g$ the force is doubled then the second of the sec	tensible string passed over d) Zero resultant is also doubled. d) 180°
463.	Two masses m_1 and m_2 ($m_1 - m_2$) a) $\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 g$ The resultant of two force The angle between the two a) 60° A rocket standing vertical	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to stopping the stopping of the	w massless flexible and inexponents of mass is $c) \frac{m_1 + m_2}{m_1 - m_2} g$ the force is doubled then the second of the control of the con	tensible string passed over d) Zero resultant is also doubled. d) 180° rally zero velocity. If the
463.	Two masses m_1 and m_2 (r massless and frictionless r a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to start 5×10^5 kg, then the rate	massless flexible and inexpectation of mass is $c) \frac{m_1 + m_2}{m_1 - m_2} g$ the force is doubled then the second of the sec	tensible string passed over d) Zero resultant is also doubled. d) 180° rally zero velocity. If the
463.	Two masses m_1 and m_2 (r massless and frictionless r a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the two a) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state 5×10^5 kg, then the rate 5×10^5 kg, then the rate 5×10^5 kg.	massless flexible and inexpense centre of mass is c) $\frac{m_1 + m_2}{m_1 - m_2} g$ t force is doubled then the second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of burning of the fuel should be a second control of the fuel should be a second contro	tensible string passed over d) Zero resultant is also doubled. d) 180° ally zero velocity. If the ld be [Take g = 10 ms^{-2}
463. 464.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gala) 10 kgs^{-1}	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state its 5×10^5 kg, then the rate 8×10^5 kg, then 8×10^5 kg.	w massless flexible and inexponents of mass is $c) \frac{m_1 + m_2}{m_1 - m_2} g$ the force is doubled then the second of the control of the con	tensible string passed over d) Zero resultant is also doubled. d) 180° rally zero velocity. If the
463. 464.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gallah a) $10~{\rm kgs}^{-1}$ The momentum is most class.	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to standard sets 5×10^5 kg, then the rate ses $= 10 \text{ kms}^{-1}$] b) 50 kgs^{-1} osely related to	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning of the fuel should be second of the fue	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take $g=10~\mathrm{ms}^{-2}$ d) $5000~\mathrm{kgs}^{-1}$
463. 464. 465.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas a) $10~\mathrm{kgs}^{-1}$ The momentum is most class.	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state 5×10^5 kg, then the rate 5×10^5 kg, then the rate 10×10^5 kg ses = 10×10^5 kg. Then the rate 10×10^5 kg.	massless flexible and inexpense centre of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second control of burning of the fuel should be compared to the following of the fuel should compare control of burning of the fuel should be compared to the fuel shoul	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take $g = 10 \text{ ms}^{-2}$ d) 5000 kgs^{-1} d) K.E.
463. 464. 465.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas a) 10 kgs^{-1} The momentum is most class. Force A block weighing W is hele F needed to hold the block	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to standard sets 5×10^5 kg, then the rate ses $= 10 \text{ kms}^{-1}$] b) 50 kgs^{-1} osely related to b) Impulse d against a vertical wall by k is	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2} g$ t force is doubled then the second of burning up with practic of burning of the fuel should be compared by th	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take $g = 10 \text{ ms}^{-2}$ d) 5000 kgs^{-1} d) K.E.
463. 464. 465. 466.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas a) $10~\mathrm{kgs}^{-1}$ The momentum is most class) Force A block weighing W is hele F needed to hold the block a) Less than W	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to stage is 5×10^5 kg, then the rate ses = 10 kms^{-1}] b) 50 kgs^{-1} osely related to b) Impulse d against a vertical wall by k is b) Equal to W	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning up with practic of burning of the fuel should be compared by the force of burning of the fuel should be compared by the fuel s	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take g = 10 ms ⁻² d) 5000 kgs ⁻¹ d) K.E. e F. The minimum value of d) Data is insufficient
463. 464. 465. 466.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the tw a) 60° A rocket standing vertical initial mass of the rocket i and velocity of exhaust ga a) 10 kgs^{-1} The momentum is most cl a) Force A block weighing W is helef needed to hold the block a) Less than W A block is lying static on the	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state it is 5×10^5 kg, then the rate 8×10^5 kg, then the rate 8×10^5 kg. b) 100° ly on a launch pad has to state it is 100° ly on a launch pad has	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning up with practice of burning of the fuel should c) 500 kgs^{-1} c) Power applying a horizontal force of the fuel of static frictional force of the static frictional friction	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take g = 10 ms ⁻² d) 5000 kgs ⁻¹ d) K.E. e F. The minimum value of d) Data is insufficient on the block is 10N. If a
463. 464. 465. 466.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gaa) 10 kgs^{-1} The momentum is most claa) Force A block weighing W is helef r needed to hold the block a) Less than r A block is lying static on the horizontal force of r 0. r 1.	$m_1 > m_2$) are connected by pulley. The acceleration of b) $\frac{m_1 - m_2}{m_1 + m_2} g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to stage is 5×10^5 kg, then the rate ses = 10 kms^{-1}] b) 50 kgs^{-1} osely related to b) Impulse d against a vertical wall by k is b) Equal to W the floor. The maximum valuapplied to the block, what valuables $\frac{1}{2} = \frac{1}{2} \frac{1}{2}$	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning up with practice of burning of the fuel should be c) 500 kgs^{-1} c) Power applying a horizontal force of the frictional force owill be the frictional force owill be the frictional force or the following of the frictional force or the frictional frictional force or the frictional f	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take g = 10 ms ⁻² d) 5000 kgs ⁻¹ d) K.E. e F. The minimum value of d) Data is insufficient on the block is 10N. If a n the block
463. 464. 465. 466.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas a) 10 kgs^{-1} The momentum is most class) Force A block weighing W is hele F needed to hold the block a) Less than W A block is lying static on the horizontal force of $8N$ is a a) $2N$	$m_1 > m_2$) are connected by pulley. The acceleration of $\frac{m_1 - m_2}{m_1 + m_2}g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state 5×10^5 kg, then the rate 5×10^5 kg. b) 50×10^5 kg, then the rate 5×10^5 kg.	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning up with practic of burning of the fuel should c) 500 kgs^{-1} c) Power applying a horizontal force of static frictional force ovill be the frictional force of the fuel should be th	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take g = 10 ms ⁻² d) 5000 kgs ⁻¹ d) K.E. e F. The minimum value of d) Data is insufficient on the block is 10N. If a n the block d) 10 N
463. 464. 465. 466.	Two masses m_1 and m_2 (r massless and frictionless) a) $\left(\frac{m_1-m_2}{m_1+m_2}\right)^2g$ The resultant of two force The angle between the twa) 60° A rocket standing vertical initial mass of the rocket is and velocity of exhaust gas a) 10 kgs^{-1} The momentum is most class) Force A block weighing W is hele F needed to hold the block a) Less than W A block is lying static on the horizontal force of $8N$ is a a) $2N$	$m_1 > m_2$) are connected by pulley. The acceleration of $\frac{m_1 - m_2}{m_1 + m_2}g$ is $3P$ and $2P$ is R . If the first of forces is b) 120° ly on a launch pad has to state 5×10^5 kg, then the rate 5×10^5 kg. b) 50×10^5 kg, then the rate 5×10^5 kg.	massless flexible and inexpense of mass is c) $\frac{m_1 + m_2}{m_1 - m_2}g$ t force is doubled then the second of burning up with practice of burning of the fuel should be c) 500 kgs^{-1} c) Power applying a horizontal force of the frictional force owill be the frictional force owill be the frictional force or the following of the frictional force or the frictional frictional force or the frictional f	tensible string passed over d) Zero resultant is also doubled. d) 180° cally zero velocity. If the ld be [Take g = 10 ms ⁻² d) 5000 kgs ⁻¹ d) K.E. e F. The minimum value of d) Data is insufficient on the block is 10N. If a n the block d) 10 N

469. A block of mass 200 kg is being pulled up by men on an inclined plane at angle of 45° as shown in the figure. The coefficient of static friction is 0.5. Each man can only apply a maximum force of 500 N. Calculate the number of men required for the block to just start moving up the plane.

b) 15

c) 5

d) 3

470. Two blocks of masses 3 m and 2 m are in contact on a smooth table. A force P is first applied horizontally on block of mass 3 m and then on mass 2 m. The contact forces between the two blocks in the two cases are in the ratio

a) 1:2

b) 2:3

c) 3:2

d) 5:3

471. If a force of 250 N act on body, the momentum acquired is $125 \, kg$ -m/s. What is the period for which force acts on the body

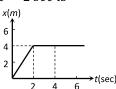
a) 0.5 sec

b) 0.2 sec

c) 0.4 sec

d) 0.25 sec

472. The average force necessary to stop a bullet of mass 20 g moving with a speed of 250 m/s, as it penetrates into the wood for a distance of 12 cm is


a) $2.2 \times 10^3 N$

b) $3.2 \times 10^3 N$

c) $4.2 \times 10^3 N$

d) $5.2 \times 10^3 N$

473. In the figure given below, the position –time graph of a particle of mass $0.1 \, kg$ is shown. The impulse at

a) $0.2 \, kg \, m \, \text{sec}^{-1}$

b) $-0.2 \, kg \, m \, sec^{-1}$

d) $-0.4 kg m sec^{-1}$

474. Two weights w_1 and w_2 are suspended from the ends of a light string over a smooth fixed pulley. If the pulley is pulled up with acceleration g, the tension in the string will be

b) $\frac{2w_1w_2}{w_1 + w_2}$

475. The engine of a car produces acceleration $4 m/s^2$ in the car. If this car pulls another car of same mass, what will be the acceleration produced

a) $8 m/s^2$

b) $2 m/s^2$

c) $4 m/s^2$

d) $1/2 m/s^2$

476. Two small balls of same size and masses m_1 and m_2 ($m_1 > m_2$) are tied by a thin weightless thread and dropped from a certain height. Training upward buoyancy force F into account, the tension T of the thread during the flight after the motion of the ball becomes uniform will be

a) $(m_1 - m_2)g$

b) $(m_1 - m_2)g/2$

c) $(m_1 + m_2)g$

d) $(m_1 + m_2)g/2$

477. A coin of mass 10 kg is placed over a book of length 50 cm. The coin is on the verge of sliding when one end of the book is lifted 10 cm up. The coefficient of static friction between the book and the coin is

b) 0.4

c) 0.3

478. If coefficient of friction between an inset and bowl is μ and radius of the bowl is r, the maximum height to which the insect can crawl in the bowl is

a) $r \left[1 - \frac{1}{\sqrt{1 + \mu^2}} \right]$ b) $\frac{r}{\sqrt{1 + \mu^2}}$

c) $r\sqrt{1+\mu^2}$ d) $r[\sqrt{1+\mu^2}-1]$

479. Consider the following two statements:

I. Linear momentum of a system of particles is zero.

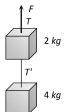
II. Kinetic energy of a system of particles is zero. Then

- a) I does not imply II and II does not imply I
- b) I implies II but II does not imply I
- c) I does not imply II but II implies I
- d) I implies II and II implies I
- 480. Two elastic blocks P and Q of equal masses m and connected by a massless spring rest on a smooth horizontal surface, as in figure. A third block R of the same mass M strikes the block P. After the collision, P and Q will

- a) Always move in same direction
- b) Sometimes move in same direction and sometime move in opposite directions
- c) Always move in opposite directions
- d) Be at rest with respect to each other
- 481. A man is standing on a balance and his weight is measured. If he takes a step in the left side, then weight
 - a) Will decrease

b) Will increase

c) Remains same

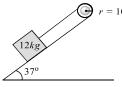

- d) First decreases then increases
- 482. The coefficient of kinetic friction between a 20 kg box and the floor is 0.40. How much work does a pulling force do on the box in pulling it 8.0 m across the floor at constant speed? The pulling force is directed 37° above the horizontal
 - a) 343 J

b) 482 J

- c) 14.4 J
- d) None of these

- 483. Work done by a frictional force is
 - a) Negative
- b) Positive
- c) Zero

- d) All of the above
- 484. Two blocks are connected by a string as shown in the diagram. The upper block is hung by another string. A force F applied on the upper string produces an acceleration of $2 m/s^2$ in the upward direction in both the blocks. If T and T' be the tensions in the two parts of the string, then ($g = 9.8 m/s^2$)

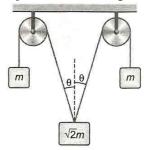


a) T = 70.8 N and T' = 47.2 N

b) T = 58.8 N and T' = 47.2 N

c) T = 70.8 N and T' = 58.8 N

- d) T = 70.8 N and T' = 0
- 485. A body shown in figure is accelerating downward with acceleration 2 m/s^2 . The tension in the string is



a) 48 *N*

b) 50 N

c) 30 N

- d) 42 N
- 486. The pulleys and the strings shown in figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

a) 0°

b) 30°

c) 45°

d) 60°

487. A car is moving along a straight horizontal road with a speed v_0 . If the coefficient of friction between the			
tyres and the road is μ , the shortest distance in which the car can be stopped is			
v_0^2	b) $\frac{v_0}{ua}$	c) $\left(\frac{v_0}{u_0}\right)^2$	d) $\frac{v_0}{u}$
a) $\frac{v_0^2}{2\mu g}$	$\frac{1}{\mu g}$	$^{\rm C}$) $\left({\mu g}\right)$	$a_j \frac{\overline{\mu}}{\mu}$
488. An elevator and its load	l have a total mass of 800 l	kg. The elevator is origin	nally moving downwards at
		-	f 25 m. Find the tension T in the
	the elevator is being brou		
a) 8000 N	b) 1600 N	c) 9600 N	d) 6400 N
489. Refer to the system sho	•	•	,
m_1 m_2	b) $\frac{m_2}{m_1 + m_2}$		
m_1	m_2	m_1	$_{-}$ m_2
a) $\frac{1}{m_1 + m_2}$	b) $\frac{1}{m_1 + m_2}$	c) $\overline{m_2}$	$\mathrm{d})\frac{m_2}{m_1}$
490. A force of 750 <i>N</i> is app.			liding on a plane with an
			on and kinetic friction between
-	are 0.4 and 0.3 respective		
a) 750 <i>N</i>	b) 500 <i>N</i>	c) 345 <i>N</i>	d) 250 <i>N</i>
		•	The coefficient of static friction
_	_		block in uniform motion, once it
	orizontal force of 3 N is approximately		
	iorizoniai force of 5 iv is ap	phea to the block The k	STOCK WIN CHEFE
→ T			
	S 1.	>	
•	ce with a constant velocity		
-	rated motion over the sur	face	
c) Not move	2		
-	nstant velocity for sometin		
			sing over a smooth fixed pulley. If
	at an acceleration g , the te	_	
a) $\frac{4\omega_1\omega_2}{\omega_1+\omega_2}$	b) $\frac{2\omega_1\omega_2}{\omega_1+\omega_2}$	c) $\frac{\omega_1\omega_2}{\omega_1}$	d) $\frac{\omega_1\omega_2}{2(\omega_1+\omega_2)}$
1 2	1 2	1 2	\ 1 = 2/
_	= =		tal is inside a lift which is moving
down with retardation	a. The time taken by α boo	dy to slide down the incl	lined plane, from rest, will be
2L	b) $\sqrt{\frac{2L}{(g-a)\sin\theta}}$	${2L}$	$\frac{1}{2L}$
a) $\sqrt{(g+a)\sin\theta}$	b) $\left \frac{1}{(g-a)\sin\theta} \right $	c) $\frac{1}{g \sin \theta}$	d) $\frac{-1}{\alpha \sin \theta}$
•	·	·	·
			m the rear end. The coefficient of
			om rest with 2 m/s^2 acceleration.
	covered by the truck when		
a) 20 m	b) 30 m	c) 40 m	d) 50 m
_		f a horizontal force of 5	N is applied on the block, the
frictional force on, it is			
a) 5 N	b) 10 N	c) 8 N	d) Zero
_			petween block and the floor is
		olock. What should be th	ne frictional force between the
block and the floor? (Ta	$ake g = 10 \text{ m/s}^2)$		
a) 8.8 N	b) 5.8 N	c) 2.8 N	d) 10.8 N
497. A small block slides with	thout friction down an incl	ined plane starting fron	n rest. Let s_n be the distance

travelled from time t = n - 1 to t = n. Then

				Gplus Education
	s_n .			
	$\frac{s_n}{s_n+1}$ is			
	a) $\frac{2n-1}{2n}$	b) $\frac{2n+1}{2n-1}$	c) $\frac{2n-1}{2n+1}$	d) $\frac{2n}{2n+1}$
	$\frac{2n}{n}$	$\frac{1}{2n-1}$	$\frac{c}{2n+1}$	$\frac{1}{2n+1}$
498	. A person is sitting in a tr	avelling train and facing the	e engine. He tosses up a coir	n and the coin falls behind
	him. It can be concluded	that the train is		
	a) Moving forward and g	gaining speed	b) Moving forward and lo	sing speed
	c) Moving forward with	uniform speed	d) Moving backward with	uniform speed
499	. A block is gently placed	on a conveyor belt moving h	orizontally with constant s	peed. After 4s the velocity
	of the block becomes equ	ual to the velocity of belt. If	the coefficient of friction be	tween the block and the
	belt is 0.2, then velocity	of the conveyor belt is		
	a) 2 ms ⁻¹	b) 4 ms ⁻¹	c) 6 ms ⁻¹	d) 8 ms^{-1}
500	. Two bodies of mass 3 kg	g and 4 kg are suspended at	the ends of massless string	g passing over a frictionless
	pulley. The acceleration	of the system is $(g = 9.8 m)$	$/s^2$)	
	a) $4.9 m/s^2$	b) $2.45 m/s^2$	c) $1.4 m/s^2$	d) $9.5 m/s^2$
501	. A force of 100 dynes acts	s on a mass of 5 $\it gram$ for 10	O sec. The velocity produce:	s is
	a) 2000 <i>cm/sec</i>	b) 200 <i>cm/sec</i>	c) 20 <i>cm/sec</i>	d) 2 cm/sec
502	. A ball of mass m moves m	with speed v and it strikes r	ormally with a wall and ref	flected back normally, if its
	time of contact with wall	l is t then find force exerted	by ball on wall	•
	a) $\frac{2mv}{t}$	b) $\frac{mv}{l}$	a)t	d) $\frac{mv}{2t}$
	$\frac{t}{t}$	l	c) mvt	$\frac{a}{2t}$
503	. Three blocks of masses \imath	m_1, m_2 and m_3 are placed or	n a horizontal frictionless su	ırface. A force of 40 N pulls
	the system then calculat	e the value of T , if $m_1=10$?	$kg, m_2 = 6 kg, m_3 = 4 kg$	
	m_1 m_2	m_3		
	10 kg 7 6 kg	-4 kg		
	a) 40 N	b) 20 N	c) 10 N	d) 5 N
504	,	a straight road with a speed		•
304	is $[\mu_k = 0.5]$	a straight road with a speed	i of 100 m/s. The distance a	it willen car can be stopped
	a) $100 m$	b) 400 m	c) 800 m	d) 1000 m
ENE	•	•	•	•
505		hed to the ceiling of a lift. A		
		tionary. If the lift moves dov	whward with an acceleratio	on or 5 m/s^- , the reading or
	the spring balance will b		a) 74 N	J) 1 L M
T06	a) 49 <i>N</i>	b) 24 <i>N</i>	c) 74 <i>N</i>	d) 15 <i>N</i>
506		urve of a particle executing		_
	momentum acquired by	the particle in time interval	from zero to 8 secona Will	be
	\$\frac{1}{2} \\ \frac{2}{4} \\ \frac{6}{6} \\ 8 \\ \frac{8}{1} \\ \frac{1}{1} \\ \frac{1} \\	e (s)		
	a) −2 <i>N</i> - <i>s</i>	b) +4 <i>N-s</i>	c) 6 <i>N-s</i>	d) Zero
507	. A body of mass 2 kg is ke	ept by pressing to a vertical	wall by a force of 100 N. Th	e friction between wall and
	body is 0.3. Then the fric	tional force is equal to		
	a) 6 N	b) 20 N	c) 600 N	d) 700 N
508		tion describes the following	•	
	a) Energy	b) Work	c) Inertia	d) Moment of inertia
509		are acting along <i>X</i> and <i>Y</i> ax		•
	a) $5\sqrt{2}, \pi/3$	b) $5\sqrt{2}, \pi/4$	c) $-5\sqrt{2}$, $\pi/3$	d) $-5\sqrt{2}$, $\pi/4$
510	•	lined plane of inclination θ		
- 10		p.a		r

incline is (the coefficient of friction is $\boldsymbol{\mu})$

a)
$$\sqrt{2gl(\mu\cos\theta-\sin\theta)}$$

b)
$$\sqrt{2gl(\sin\theta - \mu\cos\theta)}$$

c)
$$\sqrt{2gl(\sin\theta + \mu\cos\theta)}$$

d) $\sqrt{2gl(\cos\theta - \mu \sin\theta)}$

511. Newton's Second law gives the measure of

- a) Acceleration
- b) Force
- c) Momentum
- d) Angular momentum

512. The upper half of an inclined plane with inclination ϕ is perfectly smooth, while the lower half is rough. A body starting from rest at the top will again come to rest at the bottom if coefficient of friction for the lower half is given by

- a) 2 sin φ
- b) 2 cos φ
- c) 2 tan ϕ
- d) tan ϕ

513. A gun fires bullet each of mass 1 g with velocity of 10 ms⁻¹ by exerting a constant force of 5 g weight. Then the number of bullets fired per second is

 $(Take g = 10 ms^{-2})$

a) 50

b) 5

c) 10

d) 25

514. If force on a rocket having exhaust velocity of 300 m/sec is 2010 N, then rate of combustion of the fuel is

- a) $0.7 \, kg/s$
- b) 1.4 *kg/s*
- c) $0.07 \, kg/s$
- d) $10.7 \, kg/s$

515. A force of 19.6 N when applied parallel to the surface just moves a body of mass 10 kg kept on a horizontal surface. If a 5 kg mass is kept on a horizontal surface. If a 5 kg mass is kept on the first mass, the force applied parallel to the surface to just move the combined body is

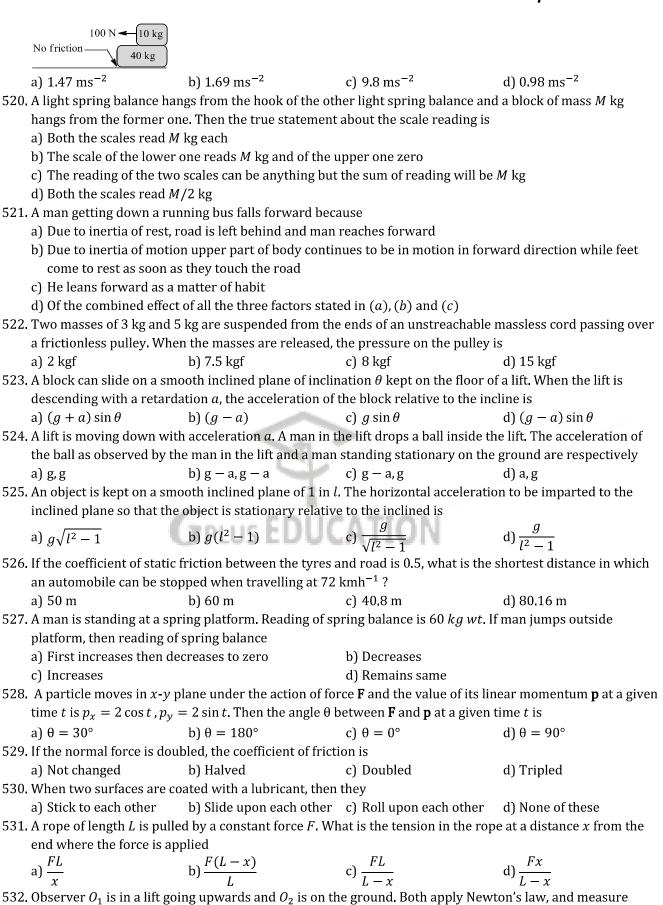
- a) 29.4 N
- b) 39.2 N
- c) 18.6 N
- d) 42.6 N

516. The adjacent figure is the part of a horizontally stretched net. Section AB is stretched with a force of 10 N. The tensions in the section BC and BF are

- a) 10 N, 11 N
- b) 10 N, 6 N
- c) 10 N, 10 N
- d) Can't calculate due to insufficient data
- 517. A block at rest slides down a smooth inclined plane which makes an angle 60° with the vertical and it reaches the ground in t_1 seconds. Another block is dropped vertically from the same point and reaches the ground in t_2 seconds.

Then the ratio of t_1 : t_2 is

b) 2:1


c) 1:3

d) 1: $\sqrt{2}$

518. A block of mass 'm' is connected to another block of mass 'M' by a spring (massless) of spring constant 'K'. The blocks are kept on a smooth horizontal plane. Initially the blocks are at rest and the spring is unstretched. Then a constant force 'F' starts acting on the block of mass 'M' to pull it. Find the force on the block of mass 'm'

- b) $\frac{(M+mF)}{m}$
- c) $\frac{mF}{(m+M)}$
- d) $\frac{MF}{(m+M)}$

519. A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top of the slab. The static coefficient of friction between the block and the slab is 0.60 while the kinetic coefficient of friction is 0.40. The 10 kg block is acted upon by a horizontal force of 100 N. If $g = 9.8 \text{ ms}^{-2}$, the resulting acceleration of the slab will be

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 57

b) Both measure zero

normal reaction on the body

a) Both measure the same value

c) Both measure differe	ent value	d) No sufficient data	
533. A ball of mass $150g$ sta	rts moving with an accele	eration of $20 m/s^2$. When	hit by a force, which acts on it
for 0.1 sec the impulsiv	re force is		
a) 0.5 <i>N-s</i>	b) 0.1 <i>N-s</i>	c) 0.3 <i>N-s</i>	d) 1.2 <i>N-s</i>
534. If a bullet of mass 5 gm	moving with velocity 100	0 <i>m/sec</i> , penetrates the w	ooden block upto 6 cm. Then
the average force impos	sed by the bullet on the bl	lock is	
a) 8300 <i>N</i>	b) 417 <i>N</i>	c) 830 N	d) Zero
535. In the first second of its	s flight, rocket ejects 1/60	of its mass with a velocit	y of 2400 ms^{-1} . The acceleratior
of the rocket is			
a) $19.6 ms^{-2}$	b) $30.2 \ ms^{-2}$	c) $40 ms^{-2}$	d) $49.8 ms^{-2}$
536. An insect crawls up a he	emispherical surface very	slowly, figure. The coeffi	cient of friction between the
insect and the surface is	s 1/3. If the line joining th	ne centre of the hemisphe	rical surface to the insect makes
an angle $lpha$ with the ver	tical, the maximum possil	ble value of α is given by	
a			
a) and $\alpha = 2$	h) aga ay — 2	a) angan w — 2	d) Name of these
a) $\cot \alpha = 3$ 537. Block <i>A</i> of mass 2 kg is	b) $\sec \alpha = 3$	c) cosec $\alpha = 3$	d) None of these
_	=	-	pefficient of friction between A
			riction between A and B is
and D is 0.4. A norizont	ar force of 10 N is applied	on block D. The force of i	riction between A and B is
2 kg			
$8 \text{ kg}^B \longrightarrow 10 \text{ N}$	< A	>	
(L) 50 N	1991	_	
(b) 50 N (d) 100 N			
a) Zero	b) 50 N	c) 40 N	d) 100 N
•	and the second s		d 4 N. The resultant force acting
on the body is	CIPLUS EDL	JUATION	G
a) 7 N	b) 1 N	c) 5 N	d) Zero
539. Which of the following	graph depicts spring cons	stant k versus length l of	the spring correctly
a) <i>k</i> ↑	b) <i>k</i> ↑	c) k ↑	d) k↑
	· /		·
TAO A finaman of mass (O k	a alidaa dayyn a nala Hai	a magaina tha mala with a	force of COO N. The coefficient
	= =		force of 600 <i>N</i> . The coefficient
	nanus and the pole is 0.5,	, with what acceleration w	will the fireman slide down ($g =$
$10 m/s^2$) a) $1 m/s^2$	b) $2.5 \ m/s^2$	c) $10 m/s^2$	d) $5 m/s^2$
	•	• •	· ·
yield the third force F_3		rectly shows the vector a	ddition of two forces F_1 and F_2 to
yield the till d force r_3			A
		F_1	∱
	1		

542. A book is lying on the table. What is the angle between the action of the book on the table and the reaction of the table on the book

_	
a)	n°

b) 30°

c) 45°

d) 180°

543. A shell at rest at the origin explodes into three fragments of masses 1 kg, 2kg and m kg. The 1 kg and 2 kg pieces fly off with speeds off $5ms^{-1}$ along x-axis and $6ms^{-1}$ along y-axis respectively. If the m kg piece files off with a speed of $6.5 ms^{-1}$, the total mass of the shell must be

b) 5 *kg*

d) 4.5 kg

544. Three blocks of masses m_1, m_2 and m_3 are connected by massless strings as shown on a frictionless table in figure. They are pulled with a force $T_3=40$ N. If $m_1=10$ kg, $m_2=6$ kg and $m_3=4$ kg, the tension T_2 will be

a) 20 N

b) 40 N

c) 10 N

d) 32 N

545. A particle of mass 0.3 kg is subjected to a force F = -kx with k = 15 N/m. What will be its initial acceleration if it is released from a point 20 cm away from the origin

a)
$$5 m/s^2$$

b) $10 \, m/s^2$

c)
$$3 m/s^2$$

d) $15 m/s^2$

546. A person sitting in an open car moving at constant velocity throws a ball vertically up into air. The ball falls

b) In the car ahead of the person

c) In the car to the side of the person

d) Exactly in the hand which threw it up

547. If the mass of A = 10 kg, coefficient of static friction = 0.22, coefficient of kinetic friction = 0.2, then minimum mass of B to start motion is

a) 2 kg

b) 2.2 kg

c) 4.8 kg

d) 3.4 kg

548. Which one of the following is not used to reduce friction

a) Oil

b) Ball bearings

c) Sand

d) Graphite

549. Rocket propulsion is associated with

a) The conservation of angular momentum

b) The conservation of mass

c) The conservation of mechanical energy

d) Newton's III law of motion

550. Consider the following statement: When jumping from some height, you should bend your knees as you come to rest, instead of keeping your legs stiff. Which of the following relations can be useful in explaining the statement

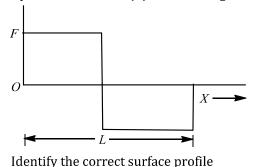
a)
$$\Delta \overrightarrow{P_1} = -\Delta \overrightarrow{P_2}$$

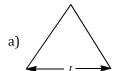
b)
$$\Delta E = -\Delta (PE + KE) = 0$$

c)
$$\vec{F}\Delta t = m\Delta \vec{v}$$

d)
$$\Delta \vec{x} \propto \Delta \vec{F}$$

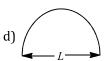
551. A body presses a book against the front wall such that the book does not move. The force of friction between the wall and the book is


a) Towards right

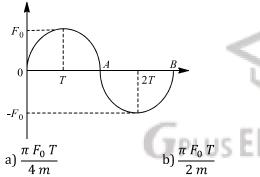

b) Towards left

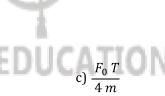
c) Downwards

d) Upwards


552. A person used force (F), shown in figure move a load with constant velocity on give surface.

553. In the figure a smooth pulley of negligible weight is suspended by a spring balance. Weights of 1 kg and 5 kg are attached to the opposite ends of a string passing over the pulley and move with acceleration because of gravity. During their motion, the spring balance reads a weight of




a) 6 kg

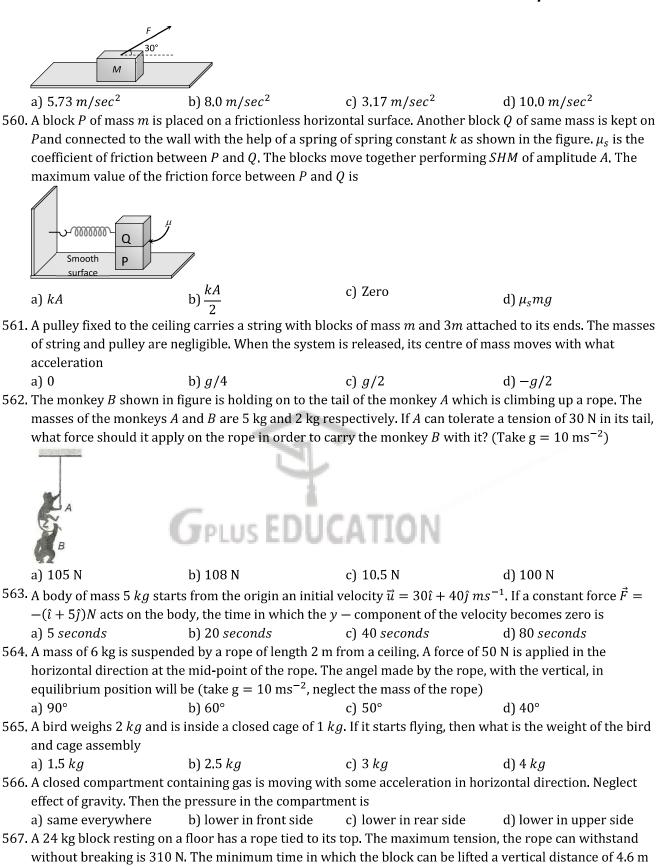
b) Less than 6 kg

c) More than 6 kg

- d) May be more or less than 6 kg
- 554. A unidirectional force F varying with time t as shown in the figure acts on a body initially at rest for a short duration 2T. Then the velocity acquired by the body is

- d) Zero
- 555. A diwali rocket is ejecting 0.05 kg of gases per second at a velocity of 400 m/sec. The accelerating force on the rocket is
 - a) 20 dynes
- b) 20 N

- c) 22 dynes
- d) 1000 N
- 556. In relativity which is constant between two frames of reference
 - a) Acceleration
- b) Conservation of mass c) Space interval
- d) Velocity
- 557. A body of mass 5 kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance, measure


a) 50 N

b) 25 N

- c) 500 N
- d) 10 N

- 558. Impulse is
 - a) A scalar

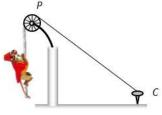
- b) Equal to change in the momentum of a body
- c) Equal to rate of change of momentum of a body
- d) A force
- 559. A block of mass M = 5 kg is resting on a rough horizontal surface for which the coefficient of friction is 0.2. When a force F = 40 N is applied, the acceleration of the block will be $(g = 10 ms^2)$

d) 2.3 s

c) 1.7 s

a) 1.2 s

by pulling on the rope is

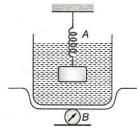

b) 1.3 s

568.		e on the bullet becomes ze		0^5t , where F is in <i>newtons</i> parrel. What is the average
	a) 9 Ns	b) Zero	c) 0.9 <i>Ns</i>	d) 1.8 <i>Ns</i>
569.	A given object taken n tim	nes as much time to slide d	own a 45° rough incline as tic friction between the obj	it takes to slide down a
	a) $\left(1-\frac{1}{n^2}\right)$	$b)\frac{1}{1-n^2}$	c) $\sqrt{\left(1-\frac{1}{n^2}\right)}$	$\mathrm{d})\sqrt{\frac{1}{1-n^2}}$
570.	connected to the wall with	h the help of a spring of sp	e. Another block Q of same ring constant k as shown in nove together performing S Q is	the figure. μ_s is the
	Smooth	<u>n</u>		
	a) <i>kA</i>	b) $\frac{kA}{2}$	c) Zero	d) $\mu_s mg$
571.	A cricket ball of mass 0.25	5 kg with speed 10 m/s col	lides with a bat and return	s with same speed with in
	0.01 s. The force acted on	bat is		
	a) 25 N	b) 50 N	c) 250 N	d) 500 N
572.	A rocket of mass 1000 kg developed on the rocket i		of 4 kgs ⁻¹ with a velocity 30	000 ms ⁻¹ . The thrust
	a) 12000 N	b) 120 N	c) 800 N	d) 200 N
573.	A 1.5 kg ball drops vertica		a speed of 25ms^{-1} . It rebo	
	a) 2000 N	s in contact for only 0.03 se b) 3000 N	econds, the force exerted or c) 3500 N	d) 4000 N
574.	Starting from rest, a body	slides down a 45° inclined	l plane in twice the time it tent of friction between the	
	a) 0.33	b) 0.25	c) 0.75	d) 0.80
575.	In figure, the blocks A , B	and ${\it C}$ each of mass ${\it m}$ have	acceleration a_1 , a_2 and a_3 r	espectively. F_1 and F_2 are
	external forces of magnit	tude 2 mg and mg respectiv	ely.	
	Then			
	m = A $m = B$ $m =$	$m \in \mathbb{R}$ $F_2 = mg$		
_	a) $a_1 = a_2 = a_3$		c) $a_1 = a_2, a_2 = a_3$	
576.		blood with constant veloci	ty v m s ⁻¹ at the rate of M	$kg s^{-1}$. The force required
	for this is (in N)			

	lling with a speed of $60 kn$ e . $120 km/h$, the stopping	n/h, can brake to stop within a g distance will be	a distance of 20 m . If the car is
a) 20 m	b) 40 m	c) 60 m	d) 80 m
-		ration of $10 m/\text{sec}^2$. Its appare	
$10 m/ \sec^2$)	g is failing with an accerei	action of 10 my see This appare	me weight win be (g
· · ·	b) 2 0 kg mt	a) $0 = ka/wt$	d) 7ana
a) 1.0 kg wt	b) 2.0 <i>kg wt</i>	c) $0.5 kg/wt$	d) Zero
	_	2 kmh ⁻¹ . His suitcase is kept o	
• •	•	train decreases at a constant r	
		between the suitcase and the b	erth if the suitcase is not the
slide during retardat			
a) $\frac{10}{49}$	b) $\frac{10}{98}$	c) $\frac{28}{49}$	d) $\frac{30}{98}$
= =	, ,	* *	70
		f 5 m/s . The gun is of one kg :	mass. By what velocity the gun
rebounds backwards	•		
a) 0.1 <i>m/s</i>	b) 10 <i>m/s</i>	c) 1 <i>m/s</i>	d) $0.01 m/s$
581. When the speed of a	moving body is doubled		
a) Its acceleration is	doubled	b) Its momentum is do	ubled
c) Its kinetic energy	is doubled	d) Its potential energy	is doubled
582. A marble block of ma	ass 2 kg lying on ice when	given a velocity of 6 ms ⁻¹ is st	topped by friction in 10 s.
Then the coefficient of		,	
a) 0.02	b) 0.03	c) 0.06	d) 0.01
•	,	•	tively. Parts having same mass
_	ar directions with velocity	$\sqrt{39}$ ms ⁻¹ , then the velocity of	bigger part will be
a) $10\sqrt{2} \text{ ms}^{-1}$	b) $\frac{10}{\sqrt{2}}$ ms ⁻¹	c) $13\sqrt{2} \text{ ms}^{-1}$	d) $\frac{15}{\sqrt{2}}$ ms ⁻¹
u) 10 v 2 m3	$\sqrt{2}$	c) 13 (2 ms	$\sqrt{2}$ ms
584. Which of the following	ng groups of forces could b	oe in equilibrium	
a) 3 <i>N</i> ,4 <i>N</i> ,5 <i>N</i>	b) 4 <i>N</i> , 5 <i>N</i> , 10 <i>N</i>	c) 30 N, 40 N, 80 N	d) 1 <i>N</i> , 3 <i>N</i> , 5 <i>N</i>
585. Formula for true for	ce is	UCATION	
585. Formula for true force $a) F = ma$	mdv	c) $F = \frac{dmv}{dt}$	d) $F = \frac{md^2x}{dt^2}$
a) r – mu	$df = \frac{dt}{dt}$	C) $F = \frac{dt}{dt}$	$df = \frac{dt^2}{dt^2}$
586. If rope of lift breaks s	suddenly, the tension exer	ted by the surface of lift	
(a = acceleration of I	lift)		
a) <i>mg</i>	b) $m(g+a)$	c) $m(g-a)$	d) 0
587. A body of weight 64	N is pushed with just eno	ugh force to start it moving acr	ross a horizontal floor and the
same force continues	s to act afterwards. If the c	coefficients of static and dynan	nic friction are 0.6 and 0.4
		oe (Acceleration due to gravity	
~			
a) $\frac{g}{6.4}$	b) 0.64 <i>g</i>	c) $\frac{g}{32}$	d) 0.2 <i>g</i>
588. In the above question	n, if the lift is moving upw	ards with a uniform velocity, t	hen the frictional resistance
offered by the body i	S		
a) <i>Mg</i>	b) <i>μM g</i>	c) 2 <i>µMg</i>	d) Zero
		applying a horizontal force of	
		e wall is 0.5, the magnitude of	
the block is		g	B
a) 2.5 <i>N</i>	b) 0.98 <i>N</i>	c) 4.9 N	d) 0.49 <i>N</i>
•	•	on a system of particles is zero	-
	_	on a system of particles is Zer	o, enem ir om an mer dar ir aille,
	one can surely say that a) Liner momentum of the system does not change in time		
	=	=	
of vineuc energy of t	the system does not chang	ge in uine	

c) Angular momentum of the system does not change in time

	d) Potential energy of the	system does not change in	time	
591	1. A stone weighing $1 kg$ and sliding on ice with a velocity of $2 m/s$ is stopped by friction in $10 sec$. The force			
	of friction (assuming it to be constant) will be			
	a) -20 N	b) $-0.2 N$	c) 0.2 N	d) 20 <i>N</i>
592	-	leration can a fireman slide	-	
-				0
	strength of the rope is $\frac{2}{3}$ or	of the weight:		
	a) $\frac{2}{3}g$	b) <i>g</i>	c) $\frac{1}{3}g$	d) Zero
۲02	3		3	
593		ds with an acceleration equ	_	
	-	t is pulled horizontally. If th	ie coefficient of friction is μ	, then the frictional
	resistance offered by the l	•		
	a) <i>mg</i>	b) μmg	c) 2μmg	d) Zero
594	The resultant force of 5 N			
	a) 12 <i>N</i>	b) 8 <i>N</i>	c) 4 N	d) 5 <i>N</i>
595	_	_	-	ient of friction between his
	palms and the pole is 0.8 a	and $g = 10 m/s^2$, the horiz	contal force that he is apply	ing on the pole is
	a) 300 N	b) 400 <i>N</i>	c) 500 N	d) 600 <i>N</i>
596	When a body is moving or	n a surface, the force of fric	tion is called	
	a) Static friction	b) Dynamic friction	c) Limiting friction	d) Rolling friction
597	It is easier to roll a barrel	than pull it along the road.	This statement is	
	a) False	b) True	c) Uncertain	d) Not possible
598	A body of mass m collides	against a wall with a veloc	ity v and rebounds with the	e same speed. Its change of
	momentum is			
	a) 2 mv	b) <i>m</i> υ	c) -mv	d) Zero
599		mass but with double area	•	
	-	ırface area A experience a f	-	
	area 2 <i>A</i> will experience a	frictional force	14 77 6 5 1	
	a) $f/2$	frictional force b) <i>f</i>	c) 2f	d) 4 <i>f</i>
600	A narticle of mass 2 kg is i	initially at rest. A force acts	on it whose magnitude cha	
000	•	•	on it whose magnitude end	inges with time, the force
	time graph is shown below			
	f(N)			
	20			
	10			
		>		
	0 2 4 6	10 t(s)		
	The velocity of the particle	a after 10 c ic		
	a) 20 ms^{-1}	b) 10 ms ⁻¹	c) 75 ms ⁻¹	d) 50 ms ⁻¹
601	-	m hanging from the ceiling	=	-
001				e period of the pendulum is
602	a) 0.8 T	b) 0.25 T	c) 2 T	d) $4T$
002	=	-		y P is tied to a hook C while
		imum tension that the rope		iat value of minimum safe
	acceleration (In ms 2) ca	nn a monkey of 60 <i>kg</i> move	down on the rope	


a) 16

b) 6

c) 4

d)8

603. A spring balance, A reads 2 kg with a block m suspended from it. A balance B reads 5 kg when a breaker filled with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid as shown in figure. In this situation

- a) The balance A will read more than 2 kg
- b) The balance B will read more than 5 kg
- c) The balance A will read less than 2 kg and B will read more than 5 kg
- d) The balance A and B will read 2 kg and 5 kg
- 604. A body of mass 10 kg is acted upon by two forces each of magnitude 10 N making an angle of 60° with each other. Find the net acceleration of the body

a) $2\sqrt{3} \text{ms}^{-2}$

b) $\sqrt{3} \text{ms}^{-2}$

c) $3\sqrt{3} \text{ms}^{-2}$

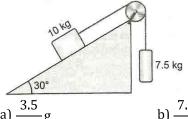
605. A motorcycle is travelling on a curved track of radius 500 m. If the coefficient of between road and tyres is 0.5, the speed avoiding skidding will be

a) 50 m/s

b) $75 \, m/s$

c) 25 *m/s*

606. A passenger train is running on a railways track with a speed v_1 . While driving, the driver discovers that another goods train is travelling in front of the passenger train with a speed $v_2(v_1 > v_2)$. Its retardation after applying brakes is a. The least distance the passenger train must travel to avoid collision with goods train is


a) $\frac{v_1^2 - v_2^2}{2a}$

b) $\frac{v_2 - v_1}{a}$

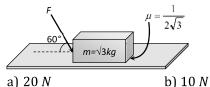
c) $\frac{v_2 + v_1}{2a}$

d) $\frac{v_2^2 + v_1^2}{2a}$

607. The acceleration of the system shown in figure is

c) $\frac{14.5}{17.5}$ g

608. If μ_s , μ_k and μ_r are coefficients of static friction, sliding friction and rolling friction, then


a) $\mu_{s} < \mu_{k} < \mu_{r}$

b) $\mu_k < \mu_r < \mu_s$

c) $\mu_r < \mu_k < \mu_s$

d) $\mu_r < \mu_k < \mu_s$

609. What is the maximum value of the force F such that the block shown in the arrangement, does not move

c) 12 N

d) 15 N

610. A mass of 1 kg is suspended by a string A. Another string C is connected to its lower end (see figure). If a sudden jerk is given to *C*, then a) The portion *AB* of the string will break b) The portion BC of the string will break d) The mass will start rotating c) None of the strings will break 611. The engine of a car produces an acceleration of 6 ms⁻² in the car. If this car pulls another car of the same mass, then the acceleration would be a) 6 ms^{-2} b) 12 ms^{-2} c) 3 ms^{-2} d) 1.5 ms^{-2} 612. A block A with mass 100 kg is resting on another block B of mass 200 kg. As shown in figure a horizontal rope tied to a wall holds it. The coefficient of friction between A and B is 0.2 while coefficient of friction between B and the ground is 0.3. The minimum required force F to start moving B will be a) 900 N c) 1100 N d) 1200 N b) 100 N 613. Swimming is possible on account of b) Second law of motion a) First law of motion d) Newton's law of gravitation c) Third law of motion 614. A block is moving up an inclined plane of inclination 60° with velocity of 20 ms⁻¹ and stops after 2.00 s. If $g = 10 \text{ms}^{-2}$ then the approximate value of coefficient of friction is c) 0.27 b) 3.3 615. Three blocks of masses 2 kg, 3 kg and 5 kg are connected to each other with light string and are then placed on a frictionless surface as shown in the figure. The system is pulled by a force F = 10 N, then tension $T_1 =$ b) 5 N d) 10 N a) 1 N c) 8 N 616. Two persons are holding a rope of negligible weight tightly at its ends so that it is horizontal. A 15 kg weight is attached to rope at the mid-point which now no more remains horizontal. The minimum tension required to completely straighten the rope is a) 15 kg b) 15/2 kg c) 5 kg d) Infinitely large 617. A block of mass $50 \, kg$ can slide on a rough horizontal surface. The coefficient of friction between the block and the surface is 0.6. The least force of pull acting at an angle of 30° to the upward drawn vertical which causes the block to just slide is a) 29.43 N b) 219.6 N c) 21.96 N d) 294.3 N 618. A particle moves in the xy- plane under the action of a force **F** such that the components of its linear momentum p at any time t are $p_x = 2 \cos t$, $p_y = 2 \sin t$. The angle between F and p at time t is b) 0° c) 180° 619. A body of 5 kg weight kept on a rough inclined plane of angle 30° starts sliding with a constant velocity. Then the coefficient of friction is (assume $g = 10 \text{ m/s}^2$)

620. A force of 10 Newton acts on a body of mass 20 kg for 10 seconds. Change in its momentum is

c) $\sqrt{3}$

b) $2/\sqrt{3}$

	a) 5 <i>kg m/s</i>	b) 100 <i>kg m/s</i>	c) 200 kg m/s	d) 1000 kg m/s
621	In a rocket of mass 1000	kg fuel is consumed at a	rate of $40 kg/s$. The velocity	of the gases ejected from
	the rocket is $5 \times 10^4 m/$	s. The thrust on the rocke	et is	
	a) $2 \times 10^3 N$	b) $5 \times 10^4 N$	c) $2 \times 10^6 N$	d) $2 \times 10^9 N$
622	. The time period of a sim	ple pendulum measured	inside a stationary lift is foun	\mathbf{d} to be T . If the lift starts
	accelerating upwards wi	ith an acceleration $g/3$, th	ne time period is	
	a) $T\sqrt{3}$	b) $T\sqrt{3}/2$	c) $T/\sqrt{3}$	d) T/3
623	-	•	ed upwards with an initial acc	
	the initial thrust of the b		1	,
	a) $1.75 \times 10^5 N$		c) $7.0 \times 10^5 N$	d) 14.0 $\times 10^5 N$
624		•	is tied with a horizontal strir	,
		_	A and B is 0.25 and between	-
				and the surface is 3. The
	horizontal force P neces	sary to move the block B	should be $\left(g = 10 \frac{\text{m}}{\text{s}^2}\right)$	
	1			
		► P		
		7		
		/		
	a) 1150 N	b) 1250 N	c) 1300 N	d) 1420 N
625	•		f 5 m . A boy on the ground hit	
023	_		o that it attains a vertical heig	
		n contact with the bat is [_	Site of 20 m. The time for
	a) 0.12 <i>s</i>	b) 0.08 <i>s</i>	c) $0.04 s$	d) 12 s
626			unning train feel an instant je	,
020	because	emy, passengers in the re	inning train reer an instant je	ik in the for ward an ection
		enly nushes the nassenge	ers forward	
	a) The back of seat suddenly pushes the passengers forwardb) Inertia of rest stops the train and takes the body forward			
	c) Upper part of the body continues to be in the state of motion whereas the lower part of the body in			
	contact with seat remains at rest			
	d) Nothing can be said d			
627	_	s correct, when a person v	walks on a rough surface	
ŭ - .	_	-	-	
	a) The frictional force exerted by the surface keeps him movingb) The force which the man exerts on the floor keeps him moving			
			on floor keeps him moving	
	d) None of the above			
628	•	le a lift suspends an objec	t. As the lift begins to ascend,	the reading indicated by the
-	spring balance will		o. 120 o. 10 o. 10 o. 00	,
	a) Increase		b) Decrease	
	c) Remain unchanged		d) Depend on the speed	of ascend
629		water hy a spring attached	d to the bottom of a pail. Whe	
02,	-	acceleration downwards	-	on the pair is hope in a
	a) Increases	b) Decreases	c) Remains unchanged	d) Data insufficient
630	•	-	s normally with a wall and re	•
550		l is t , then find force exert		meeted back normany, ii its
			-	_ mv
	a) $\frac{2mv}{t}$	b) $\frac{mv}{t}$	c) mvt	d) $\frac{mv}{2t}$
	-			

631.	a) The lift was in constantb) The lift was in constantc) The lift while in constant	and then comes back to the motion upwards	e original mark. What shoo	
632.	. A body is sliding down an inclined plane having coefficient of friction 0.5. If the normal reaction is twice that of the resultant downward force along the incline, the angle between the inclined plane and the horizontal is			
	a) 15°	b) 30°	c) 45°	d) 60°
633.	Two masses of M and $4M$ a) 1:8	are moving with equal kin b) 1:4	netic energy. The ratio of th c) 1:2	eir linear momentum is d) 4:1
634.		re joined together by mean ure. When the bigger mass	_	ng passed over a frictionless vill ascend with an
	a) $\frac{g}{3}$	b) $\frac{3g}{2}$	c) $\frac{g}{2}$	d) a
	3	_	$\frac{c_j}{2}$	d) <i>g</i>
635.	When a body is stationarya) There is no force actingc) The combination of forceeach other	on it	b) The force acting on it is d) The body is in vacuum	s not in contact with it
636.	636. Three forces F_1 , F_2 and F_3 together keep a body in equilibrium. If $F_1 = 3$ N along the positive x -axis, $F_2 = 4N$ along the positive y -axis, then the third force F_3 is a) 5 N making an angle $\theta = \tan^{-1}\left(\frac{3}{4}\right)$ with negative y -axis			
	b) 5 N making an angle $\theta = \tan^{-1} \left(\frac{4}{3}\right)$ with negative y axis			
	c) 7 N making an angle $\theta = \tan^{-1} \left(\frac{3}{4}\right)$ with negative y axis			
	d) 7 N making an angle θ	$= \tan^{-1}\left(\frac{4}{3}\right)$ with negative 2	y axis	
637.				s 1 km/sec , then it lifts with d) 1 ms^{-2}
638.	If two particles collide at c	constant temperature then	which of the following is c	onserved?
639.	a) Kinetic energyA box is lying on an incline angle of inclination is 60°	b) Momentum ed plane what is the coeffic	c) Temperatureient if static friction if the l	d) Velocity pox starts sliding when an
640.	a) 1.173 A man of weight mg is mo	b) 1.732 ving up in a rocket with ac	c) 2.732 celeration 4g. the apparen	d) 1.677 t weight of the man in the
	rocket is			
	a) Zero	b) 4 mg	c) 5 <i>mg</i>	d) <i>mg</i>
641.	pulley fixed at the corner of	kg and 5 kg respectively, and table as shown in figur hat may be placed on A to p	e. The coefficient of friction	g passing over a frictionless on of <i>A</i> with the table is 0.2.

A)
	В
a) 15 kg	b) 5 kg

c) 10 kg

642. The coefficient of friction between a body and the surface of an inclined plane at 45° is 0.5. If $g = 9.8 \, m/s^2$, the acceleration of the body downwards in m/s^2 is

a) $\frac{4.9}{\sqrt{2}}$

b) $4.9\sqrt{2}$

c) $19.6\sqrt{2}$

d) 4.9

d) Zero

643. The mass of a body measured by a physical balance in the lift at rest is found to be m. If the lift is going up with an acceleration a, its mass will be measured as

a) $m\left(1-\frac{a}{a}\right)$

b) $m\left(1+\frac{a}{a}\right)$

c) m

d) Zero

644. An object placed on an inclined plane starts sliding when the angle of incline becomes 30°. The coefficient of static friction between the object and the plane is

a) $\frac{1}{\sqrt{3}}$

c) $\frac{1}{2}$

d) $\frac{\sqrt{3}}{2}$

645. A rider on horse back falls when horse starts running all of a sudden because

a) Rider is taken back

b) Rider is suddenly afraid of falling

c) Inertia of rest keeps the upper part of body at rest whereas lower part of the body moves forward with

d) None of the above

646. A gardner waters the plants by a pipe of diameter 1mm. The water comes out at the rate or $10 \ cm^3/sec$. The reactionary force exerted on the hand of the gardner is a) Zero b) $1.27 \times 10^{-2} N$ c) $1.27 \times 10^{-4} N$

d) 0.127 N

647. A bullet is fired from a gun. The force on the bullet is given by $F = 600 - 2 \times 10^5 t$ where F is in newton and t in second. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average in pulse imparated to the bullet?

a) 9 Ns

b) 1.8 ns

c) 0.9 Ns

d) 0.3 Ns

648. A gun of mass 10 kg fires 4 bullets per second. The mass of each bullet is 20 g and the velocity of the bullet when it leaves the gun is $300 \, ms^{-1}$. The force required to hold the gum while firing is

a) 6 N

b) 8 N

c) 24 N

d) 240 N

649. A shell is fired from a cannon with velocity $v \text{ ms}^{-1}$ at an angle θ with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed in m/s of the piece immediately after the explosion is

a) $3v \cos \theta$

b) $2v\cos\theta$

c) $\frac{3v}{2}\cos\theta$

d) $\frac{\sqrt{3}v\cos\theta}{2}$